西北干旱半干旱地区退化生态系统的保护与恢复

西北干旱半干旱地区退化生态系统的保护与恢复

一、Conservation and restoration of degraded ecosystems in arid and semi-arid areas of northwest China(论文文献综述)

张小华[1](2021)在《内蒙古赛罕乌拉草地不同利用方式下蒸散发与生态效应研究》文中认为内蒙古草原处于大陆性干旱半干旱气候区,气候波动性较大,同时具有脆弱性和严酷性,使得处于干旱半干旱区农牧交错带的草原的生态系统更容易发生退化。降水是干旱半干旱区水分补给的主要来源,蒸散发是干旱半干旱区最主要的水分损失途径,而植被恢复势必会增加耗水量和土壤水分的损失。因此,精确地估算干旱半干旱地区蒸散量和雨水资源化潜力指数,并掌握其时空规律极为重要。本文通过对不同保护与利用方式下草地蒸散发、雨水资源化潜力指数与生态效应的研究,以期为区域植被配置和草地保护与合理利用提供建议与理论支持。本研究使用涡动相关观测技术获取了干旱半干旱地区赛罕乌拉的草地生长期观测数据,对三种保护利用方式下的草地物种组成、重要值、地上生物量、盖度及多样性等方面的变化进行了分析,对其产生的生态效应及其变化趋势进行了评估;使用构建的SEBAL模型,模拟了研究区2000~2019年的蒸散发量及其变化(evapotranspiration,ET),分析了蒸散发的时空变化特征;利用模型法计算了雨水资源化潜力指数(rain water utilization potential indicator,RUP);分析了不同保护利用方式下草地生物量、丰富度、多度、盖度等对蒸散发的影响。主要研究成果如下:(1)研究区草地生长季蒸散发及气象因子变化变化规律。实验观测期间,蒸散发量从5月到6月呈下降趋势,从6月到8月呈上升趋势并达到峰值,8月后持续下降,生长季的蒸散发量为313.8 mm。草地碳源汇效应成波动状态,土壤的体积含水量与降雨变化呈现一致性,降雨多集中于后期。(2)利用水分亏缺来评价现有水资源是否满足生态系统可持续发展的方法同样适用于赤峰区域,通过大尺度研究表明,干旱半干旱区草地实际蒸散发量与雨水资源化潜力空间分布格局具有较好的空间一致性。以赛罕乌拉所在的赤峰市为例,研究了大尺度蒸散发与雨水资源化潜力的关系,结果表明,实际蒸散发量与雨水资源化潜力指数的空间分布格局基本一致。蒸散发高值区域(>400 mm),对应的雨水资源化潜力相对较小,而蒸散发中值与低值区域(<400 mm),对应的雨水资源化潜力相对较大。在研究时段,大多数区域处于年动态水分盈余状态。(3)研究了解了赛罕乌拉蒸散发的时空动态变化特征。通过遥感和空间分析表明,在空间上,实际蒸散发的高值区(>400 mm)主要集中分布在森林生态系统区域;从时间变化上,2010~2019年实际蒸散发整体呈现增加趋势。其中,2000~2009年实际蒸散发的高值区(>400 mm)面积呈下降趋势,中值区(300~400 mm)呈先上升后下降的趋势;在水分亏缺盈余方面,从2000~2006年,水分盈余区域面积逐渐减少,从2006到2012年,水分盈余区域面积呈显着增加趋势,而2012年之后到2019年,雨水资源化潜力又逐年减小,其中2016~2019年三种不同保护利用方式的草地均处于年动态水分亏缺状态,表明气象要素对蒸散发有显着影响。(4)揭示了不同保护利用方式下草地实际蒸散发与草地主要生长状况指标的相关关系。对赛罕乌拉2000~2019年的蒸散发研究表明,不同保护利用方式草地的蒸散发与均匀度指数和生物量均呈正相关关系,且围封草场的相关性较强,放牧草场的相关性较弱。围封草场和打草场的多样性指数变化范围较广,与蒸散发的相关性也呈正相关关系,而放牧场的多样性指数与蒸散发呈负相关关系。放牧草场和围封草场的蒸散发随着总盖度的增加而增加,而打草场的蒸散发与总盖度的相关性较弱(5)研究发现了不同保护利用方式下的草地生态效应变化。通过对生态系统多样性特征效应、结构效应、质量效应、功能效应、风沙防护效应等综合研究表明,围封恢复草场的生态效应为正向效应,打草场的生态效应为负向效应,放牧草场的生态效应为零效应,表明退化草地围封恢复措施有利于生态环境的改善,打草场常年打草不利于生态环境的改善,围栏恢复是实现退化草原植被向顶极群落恢复演替的有效措施。(6)研究发现,草地围封模式更有利于植被的恢复,适合于干旱半干旱农牧交错区退化草地的恢复。在降水量低于350 mm的干旱半干旱区,建议以围封保护恢复为主,同时控制草地围封保护和刹割时间,在保护的前提下提升经济效益。在对需要进行人工补种的严重退化草地,首先,应以草本植物修复为主。其次,选择合适的耐寒、耐旱的本地物种,同时优化草本植物的种植密度,降低草地的耗水,减缓干旱胁迫,提高农牧交错区的草地保护与恢复成效。在实现区域水资源合理利用的前提下,提升社会与经济效益,实现生态修复效益最大化。

李彬彬[2](2021)在《黄土高原植被恢复过程中土壤碳氮水耦合机制及恢复力研究》文中认为土壤碳氮水是生态系统中最为关键的生源要素之一,决定生态系统的稳定性和可持续性。作为干旱半干旱黄土高原植被恢复过程中的限制性土壤资源,土壤碳氮水的可利用性是该区生态建设成效的关键。因此,理解植被恢复过程中土壤碳氮水变化动态、耦合关系及恢复力是明确黄土高原生态系统稳定性和可持续性的重要环节。本研究针对我国干旱半干旱地区生态建设需求及生态学前沿问题,以退耕后恢复生态系统(人工乔木、人工灌木、撂荒草地)为研究对象,通过历史资料收集和野外调查采样,构建了以土壤碳氮水为主的多因子数据库,研究了植被恢复过程中土壤碳氮水演变过程、耦合关系及恢复力,探讨如何实现土壤碳氮水可持续利用与协同发展,并提出基于限制性资源可持续利用的人工植被管理对策,可为黄土高原人工植被可持续经营提供科学依据。取得的主要结论如下:(1)人工植被建设对深层土壤有机碳储量变化影响较大,植被恢复年限是影响剖面土壤固碳的关键因子,在植被恢复过程中,人工乔木林地深层土壤固碳潜力较高。耕地转为人工乔木、人工灌木和撂荒草地后,0-100 cm土层有机碳储量分别增加46.2%,23.9%和27.3%,100-400 cm有机碳储量分别增加19.8%,12.0%和7.9%,约占表层土壤固碳量的42.9%,50.3%和28.8%。人工乔木和人工灌木林地0-200 cm土层的土壤有机碳储量随植被恢复年限增加而增加,而200-400 cm土层土壤有机碳储量则随植被恢复年限先增加后降低,其拐点出现在植被恢复25年时;初始有机碳储量、降雨量、恢复年限、植被类型是影响剖面土壤有机碳储量的重要因素;植被恢复过程中浅层与深层土壤有机碳储量显着相关,0-100cm土层每增加1Mg C ha-1,100-400 cm土层则增加0.45 Mg C ha-1。(2)黄土高原人工植被恢复可增加浅层与深层土壤氮储量,且土壤固氮潜力随植被恢复时间的延长而增加,人工乔木和灌木的土壤固氮潜力高于撂荒草地。在0-200 cm土层内,耕地转为人工乔木、人工灌木和撂荒草地后,土壤氮储量随植被恢复年限的增加而增加,尤其是在植被恢复后期(>30年)氮累积量较高,较坡耕地分别增加55.8%、68.4%和36.6%;土壤氮固存与有机碳含量、土壤水分含量和初始氮储量显着相关,且受不同植被类型、降雨、温度、恢复年限及其交互效应的影响;0-20 cm土壤氮固存每增加1Mg N ha-1,20-200 cm则增加0.33 Mg N ha-1。(3)深层土壤水分亏缺限制了黄土高原人工植被的可持续性,植被类型、恢复年限和降雨量是影响区域尺度深层土壤水分的关键因子。植被恢复方式和林分显着影响0-1000 cm剖面土壤水分含量,其中人工乔木和灌木对土壤水分的负效应强于撂荒草地;与人工刺槐、油松和柠条相比,人工侧柏和沙棘在深层土壤水分维持方面具有明显的优势;人工乔灌土壤水分亏缺程度随恢复年限的增加而加剧,在恢复至20-30年时,土壤水分大幅降低,并在恢复30年后保持稳定;区域尺度上,人工乔木、人工灌木、撂荒草地土壤水分变化速率分别为-0.08~-0.11 g 100g-1 yr-1、-0.05~-0.20 g 100g-1 yr-1和-0.02~-0.07 g100g-1 yr-1;当考虑植被类型与降雨梯度的交互效应时,在降雨量高于480 mm的地区,可以种植人工乔木和人工灌木;在低于480 mm的地区,撂荒草地是最优的恢复方式。(4)人工植被建设导致土壤碳氮耦合关系发生改变,深层土壤碳氮耦合关系对气候变化的响应较浅层土壤更加敏感。在植被恢复过程中,土壤碳氮耦合关系由相对稳定逐渐向不稳定发展,在恢复20年后,土壤碳氮解耦趋势明显,尤其是在深层土壤中。与人工植被相比,长期的自然恢复(地带性顶极森林和顶极草地群落)能够保持浅层和深层土壤碳氮耦合关系的稳定性。此外,人工植被土壤碳氮耦合关系非线性响应于降雨和温度的变化,且土壤碳氮耦合关系对温度变化的敏感性高于降雨变化。与人工乔木和灌木林地相比,撂荒草地土壤碳氮耦合关系对降雨和温度的变化表现出较高的稳定性和适应性。(5)植被恢复方式影响土壤碳水耦合关系,与人工植被相比,撂荒草地在气候变化背景下表现出较强的土壤碳水调控能力。黄土高原人工植被建设导致土壤碳水耦合协调度显着降低,处于失调状态,且显着低于耕地和地带性顶极植被。整体而言,在植被恢复过程中,土壤碳水耦合协调度在恢复的前30年呈持续解耦趋势,以10-20年期间解耦趋势最为明显;降雨和温度显着影响土壤碳水耦合关系,其影响程度随植被类型和土壤深度的变化而变化。撂荒草地土壤碳水耦合关系对降雨和温度变化的敏感性高于人工植被,表现出较强的土壤碳水调控能力。(6)人工植被建设在促进土壤碳氮协同恢复的同时,却导致土壤水分恢复力降低;综合来看,撂荒草地是实现土壤碳氮水同步恢复的较优方式。基于“历史动态本底”和“地带性顶极生态本底”,构建了区域尺度植被恢复过程中土壤碳氮水恢复力评估框架;在黄土高原植被恢复过程中,土壤碳氮呈协同恢复趋势,但与地带性顶极植被相比,人工植被土壤碳氮恢复程度不足50%;土壤水分呈退化趋势,尤其是人工乔木和灌木,而撂荒草地具有较为可持续的水分恢复力。随着植被恢复年限的增加,0-200 cm土壤碳氮恢复力逐渐增加,而土壤水分恢复力逐渐降低。在降雨和温度梯度上,不同植被类型、不同深度土壤碳氮水恢复力变化趋势各异,与人工乔木和撂荒草地相比,人工灌木0-200 cm剖面土壤碳氮水恢复力在气候梯度上呈增加趋势。综合土壤碳氮水恢复力来看,撂荒草地是实现三者同步恢复的较优方式。

郑颖[3](2021)在《基于数值模拟的毛乌素沙地植被变化对区域气候和水分平衡影响研究》文中指出土地利用/覆盖变化(Land use and land cover change,LUCC)对气候变化的影响是全球变化研究的重要内容之一。陆地植被变化是LUCC的重要表征,其可通过改变植被覆盖度、地表反照率等生物地球物理属性,调节地表能量平衡和水分循环,进而对区域气候要素和水分平衡产生重要影响。地处干旱半干旱区的毛乌素沙地作为“黄河流域生态保护和高质量发展”国家战略的重要组成部分,是典型的生态环境脆弱区与气候变化敏感区,曾经是我国荒漠化最严重的地区之一。自2000年以来,随着一系列生态恢复工程的实施,该地区植被状况呈现明显好转、生态环境得到显着改善,已成为我国植被恢复和荒漠化逆转最为成功的案例。然而,大规模植被变化对区域气候的生物地球物理调节效应以及对水分平衡的影响仍然缺乏定量评估,亟待开展深入研究。本文以毛乌素沙地为研究对象,首先基于归一化植被指数(Normalized Difference Vegetation Index,NDVI)查明了植被变化的时空特征,并区分了气候变化和人类活动对植被变化的相对贡献;其次,采用数值模拟法,利用WRF-Noah陆-气耦合区域气候模式,定量评估了植被变化对气温、降水等关键气候要素的影响并阐明了其物理过程和机制,在此基础上,进一步评估了植被变化对区域水分平衡的影响;最后,从极端土壤湿度变化的角度模拟了陆面蒸散改变对区域降水的影响潜力,并与外界水汽输送改变对降水的影响相比较,探讨了区域陆面过程(如蒸散)与大尺度大气过程(如外界水汽输送)对降水的相对重要性。本研究可为干旱半干旱地区植被恢复与生态建设提供理论支撑,为深入理解当地气候变化的归因、科学应对气候变化并制定适应性策略提供科学参考,并有望充实和完善植被-气候关系的基础理论。主要研究结果和结论如下:1.2001-2018年毛乌素沙地约有86%的区域植被生长季(5-9月)NDVI呈显着增长趋势(p<0.05),区域平均变化率为0.049 decade-1。植被状况的显着好转受到气候变化和人类活动的共同影响,其中,大部分区域人类活动的贡献率超过80%,而同期气候变化的贡献率通常不足20%。2.毛乌素沙地植被恢复使夏季地表生物地球物理属性发生强烈改变,植被覆盖度和叶面积指数大幅增加,而地表反照率有所降低。模拟结果显示,响应于植被变化,夏季日均气温降低了0.13-0.32℃,并且夜间最低气温的降温幅度(0.15-0.47℃)明显大于白天最高气温(0.04-0.13℃),这种不对称降温效应导致气温日较差增加了0.1-0.37℃。同时,植被恢复具有微弱的增湿效应,气温和比湿的联合响应使地面空气热含量减少了0.1-0.4 k J/kg,为当地夏季带来略微冷湿的气候环境条件。此外,植被恢复在一定程度上引起夏季极端高温事件强度和频率的减少以及极端低温事件强度和频率的增加。植被恢复对日均气温产生的降温效应主要归因于蒸散的增加,而土壤热通量的昼夜循环减弱在最低气温变化中发挥了更大的作用。3.毛乌素沙地植被恢复引起区域夏季蒸散增加了0.17 mm day-1,增幅为8%,相当于整个沙地的夏季蒸散耗水量增加了约3.5×108 m3。但由于水汽增加未能引起明显的降水正反馈,同时蒸散冷却作用使大气趋于稳定,在一定程度上会抵消水汽增加可能对降水产生的积极影响,因此,植被恢复对区域降水的影响可忽略不计。由于水分亏缺得不到降水反馈的补偿,使区域地表水分平衡被打破,导致0-200 cm深度的土壤湿度有所减少,且深层土壤水分的消耗超过表层。4.陆面蒸散变化对毛乌素沙地降水的影响潜力很小,当地降水变化主要受到外界水汽输送的支配。水汽通量辐合(MFC)高值时期的区域降水量比低值时期高出70%以上,同时中高强度降水(>10 mm day-1)有所增多。降水变化可分解为影响水汽供应能力的直接贡献以及影响降水效率的间接贡献。高MFC主要通过提高降水效率从而显着增加降水;土壤湿度改变引起的蒸散增加仅在MFC高值时期通过间接贡献对区域平均降水有一定的积极影响,但这种效应相对较小,对降水的作用也不显着。综上所述,毛乌素沙地植被恢复导致的蒸散增加对区域夏季气温具有明显的降温效应,这在一定程度上有助于缓解当地气候变暖以及极端气温事件对生态系统造成的负面影响,但这种变化却不足以促进区域降水的增加。该地区降水主要受到外界水汽输送变化的强烈影响,而陆面蒸散变化对降水的影响潜力很小,进一步说明即使区域陆面状况有较大程度的改变(如大规模植被恢复),由其引发的蒸散变化对降水产生的生物地球物理反馈可能也将十分有限。需要引起重视的是,植被覆盖增加造成的水分亏缺得不到降水反馈的补偿,反而造成土壤水分减少,可能会加剧水资源短缺,将不利于维持当前植被恢复和生态系统服务的可持续性。因此,本研究建议未来干旱半干旱地区的植被恢复与生态建设,应综合权衡植被-气候-水文之间的关系,植被建设要与当地气候和生态承载力相适应,以实现区域可持续发展。

杨洁[4](2021)在《黄河流域草地生态系统服务功能及其权衡协同关系研究》文中研究指明生态系统功能的可持续对区域乃至全球可持续发展和生态安全具有重要意义。黄河流域是涵养水源、防风固沙、生物多样性保护等生态功能的重要区域,该区域生态状况关系华北、西北乃至全国的生态安全。过去几十年,人类活动的显着增加及气候明显变暖对其生态环境造成深刻而显着的影响。探究黄河流域生态系统服务功能过去变化、未来趋势及其空间异质性,揭示不同服务功能的权衡协同关系及其尺度效应,明确草地生态系统对全域生态系统服务功能的贡献,对于科学合理开展流域生态治理和修复具有重要的科学价值。本文基于土地利用/覆被变化与生态系统服务功能的基本关系,以流域土地利用/覆被变化为科学起点,以1990、1995、2000、2005、2010和2018年为研究期,采用In VEST模型定量评估产水量、碳储存、土壤保持、生境质量,采用CASA模型评估净初级生产力(NPP),明晰其时空分异特征,在此基础上明确草地生态系统5项服务功能的时空变化特征,揭示生态系统服务功能对草地利用变化的敏感性,探究生态系统服务功能权衡协同关系及其尺度效应并探究草地生态系统5项服务功能的权衡协同机制及其驱动因素,最后利用CA-Markov模型预测黄河流域未来10年土地利用/覆被变化及其生态系统服务功能的变化,以生态系统服务功能空间格局特征、各功能间权衡协同关系以及未来变化趋势划定黄河流域生态功能分区继而提出草地生态系统管理对策。主要得到以下结果:(1)黄河流域草地面积占整个区域总面积的50%左右,以低覆盖度草地为主,1990—2018年,中、高度覆盖度草地面积减少而低覆盖度草地面积增加,草地退化趋势明显,由于退耕还林还草政策的实施,林地面积增加;全流域各类土地利用/覆被类型转换频繁,尤其以草地、林地和耕地间的相互转换以及耕地向建设用地转换最为显着;28a间,各二级流域土地利用覆被/类型组合较稳定,从西到东呈现出“草地(林地)—耕地—建设用地”的地带性规律。(2)1990—2018年黄河流域产水服务功能增强,而碳储存、土壤保持、生境质量等服务功能不断减弱,净初级生产力服务功能先减弱后增强。28a间,生态系统服务功能在空间上未发生特别明显的变化,黄河上游可提供较高的产水、碳储量、生物多样性以及土壤保持服务,而下游地区净初级生产力服务较为突出,各项生态服务功能表现出明显的空间异质性且对草地与其他土地利用覆被类型的转换较为敏感,足以说明草地生态系统在全域生态系统的重要性。(3)草地是流域生态系统服务功能的主要贡献者,提供产水量占比达76.74%,土壤保持量占比为49.44%,碳储量占比为33.56%,草地生境质量、净初级生产力与其他地类相比均较高。与全域生态系统服务功能类似,草地生态系统服务功能在空间上表现出极强的空间异质性,主要受草地的分布及面积影响,草地各项生态系统服务功能具有明显的地形效应。(4)黄河流域5项生态系统服务间的关系在研究期内基本稳定,土壤保持、生境质量、碳储存、NPP各项服务功能之间主要以协同关系为主,权衡协同关系表现出明显的空间异质性。生态系统服务权衡关系具有明显的尺度效应,各二级流域生态系统服务功能权衡关系与全域不同,且各二级流域之间也有所不同,各个生态系统服务功能整体表现出了明显的流域差异且显示出较明显的地域规律。草地5项生态服务功能的权衡协同关系与全域有着完全不同的结果,具体表现为5项生态系统服务功能在研究各期均为协同的关系,同时也表现出空间异质性。(5)无论在未来采取生态保护措施、保护耕地措施还是自然变化,黄河流域产水服务、土壤保持服务、生境质量均会比2018年减弱,但不同情景的减弱幅度不同,在生态保护情景下上述3项服务减少最少,碳储量服务功能和净初级生产力增加最多。高覆盖度草地在生态保护情景下的生境质量和NPP最高;中覆盖度草地的土壤保持和碳储量在生态保护情景下最高;低覆盖度的产水量最高,在自然变化RCP8.5情景下最高。(6)根据各项生态系统服务功能空间分异、权衡协同关系,可将黄河流域生态系统服务功能划分为3个主导功能区,Ⅰ区为水源供给、碳储存及生境维持服务主导功能区,主要分布在黄河流域兰州以上地区,Ⅱ区为生境维持及碳储存服务主导功能区,主要分布在黄土高原、银川平原和和河套地区,Ⅲ区为初级净生产力(NPP)服务主导功能区,主要分布在黄河流域下游。根据草地生态系统服务功能空间分布格局,确定1个草地生态保护极重要单元、5个草地单项生态服务功能核心单元以及5个草地生态服务提升单元并分别提出草地生态系统各项服务功能保护和提升对策。以上研究结果表明草地作为黄河流域分布最广、面积最大的土地利用/覆被类型,其生态系统服务功能显着影响黄河流域全域生态系统服务功能以及各项生态系统服务功能间的权衡协同关系,不同流域会因草地面积的大小及其分布不同使得生态系统服务表现出明显的空间异质性,进而使得不同区域主导生态系统服务功能不同。黄河流域高质量发展和生态治理需要特别重视草地生态系统服务功能的重要性,但同时应当立足于不同时空尺度权衡生态系统服务与区域人类福祉的复杂关系,加强不同层面政策的衔接能力。

李婕[5](2021)在《元谋干热河谷小桐子(Jatropha curcas L.)人工林水分胁迫适应机制研究》文中提出元谋干热河谷区是我国典型生态环境脆弱区,存在水热矛盾突出、生态修复困难、社会经济发展相对滞后等缺点。该地区过去开展了以种植桉树、银合欢等生态树种为主的植被修复工程,但较为单一的种植模式难以保证植物多样性和生态系统的稳定性,导致生态效应有限且缺乏经济效益。本世纪初至今,为构建多样性生态系统,元谋县开展了以“经果林”和“生态林”相结合的植被修复策略,使得全县中高、高植被覆盖度区域在2019年达到97.5%,较1999年增加36.82%,植被恢复取得显着效果同时也推动了当地经济发展,但干热气候和水分胁迫仍是制约该地区植被恢复的主要环境因子,如2012年,干热胁迫导致植物大面积凋萎甚至死亡。因此,选择耐旱性能强、种植效益高、环境友好型树种作为该区域的生态修复树种变得尤为迫切。小桐子(Jatropha curcas L.)因为其生长迅速、抗逆性强及含油量高(生物柴油),被认为是可以缓解能源危机的生态修复树种,在我国云南主要分布于海拔500-1930 m的金沙江、澜沧江、怒江、元江河谷地带。但基于气候变化与水量平衡,作为入侵物种的小桐子,种植后是否降低了该地区植物多样性,是否增加了该地区的干旱程度以及其适应干热环境的水分传输机制尚不明确。因此,本研究以元谋干热河谷生态修复树种小桐子为研究对象,基于对元谋干热河谷气候与植被关联的分析,小桐子林地蒸散发、降雨再分配及土壤水分的定位观测,高温与干旱胁迫控制试验,分析小桐子人工林地生态水文过程和小桐子干旱胁迫及适应性机制,研究小桐子能否作为干热河谷生态修复树种,找寻小桐子的生态修复适宜区,为该区生态修复的树种选择及后继相关研究提供支撑。研究主要结果如下:(1)本文采用波文比能量平衡法实测小桐子人工林实际蒸散发,蒸散发变化规律为:平地>坡地,湿季>干季,晴天>雨天。以2020年为例,湿季和干季的降雨量为464.24和45.91 mm,平地和坡地实际蒸散发(ETbowen)为214.04和182.18 mm(湿季),107.9和95.94 mm(干季),湿季降雨能满足小桐子林地对蒸腾、蒸散耗水需求,但干季的实际蒸散发量大于降雨量。(2)基于次降雨事件的连续观测发现,小桐子林冠层对降雨进行再分配,其穿透雨量、树干茎流量和截留量分别占比72.48%、4.60%和22.92%,产生穿透雨和树干茎流的临界雨量为0.6和4.8 mm,今后可通过降雨量、降雨历时和降雨强度来估算林冠层对降雨的再分配特征。元谋干热河谷区年内土壤蓄水量变化分为3个阶段:土壤水分消耗期(10~12月),土壤水分恢复期(6~9月)和土壤水分相对稳定期(1~5月)。此外,干季耗水而湿季蓄水,10~30cm土层蓄水量最大,30~50cm土层蓄水量次之,50~75cm土层单月耗水量最大。研究期内,平地和坡地的土壤蓄水量为39.32和16.58 mm,种植小桐子后起到了保持水土、涵养水源的作用。(3)高温与干旱胁迫均在一定程度上减弱了小桐子叶片的光合特性和植物水势,导致小桐子冠层和根系的导水能力减弱,水流阻力增加,植物的生长和干物质质量的积累受到抑制,但植物为适应干旱胁迫可通过调控水势差来减缓逆境条件下的吸水难度。干旱胁迫是导致液流通量降低的主要因素,在午间高温情况下,液流通量有所下降,形成短暂的“午休”现象以减少水分散失。(4)元谋干热河谷小桐子种植区植物种类丰富,小桐子群落物种丰度可达7.61,生态系统功能的稳定性比桉树人工林、银合欢人工林和稀疏灌草丛高,属于生态环境友好型树种。综合考虑小桐子生长以及乔灌层和草本层植物群落多样性,最适宜小桐子植被恢复的区域:海拔≥1100 m,10°<坡度≤15°范围内;较适宜小桐子植被恢复的区域为海拔≥1100 m,坡度>15°范围内;较不适宜小桐子植被恢复的区域为海拔<1100 m,坡度<10°范围内。小桐子在元谋干热河谷区作为生态友好型树种,在调节气候、保持水土、涵养水源和修复生态方面发挥着积极作用,抗高温和干旱胁迫能力强,干旱复水后仍能恢复正常的生理和生长活动,可作为干热河谷区生态修复树种。

刘英[6](2020)在《半干旱煤矿区受损植被引导型恢复研究》文中研究说明我国西部半干旱矿区生态环境脆弱,气候条件恶劣,煤炭资源开发重心西移,使本就脆弱的生态环境恶化,社会生态环境问题进一步加剧。实现矿山土地的可持续管理、恢复矿山土地的生产能力变得尤为迫切,弄清煤炭资源开采扰动下地表环境因子的改变对植物影响规律,探索半干旱矿区植物引导型恢复的有效方法是矿区生态环境可持续发展的必然要求,也是国家科技的重大需求。但是,半干旱矿区受损植被引导型恢复还面临植被在哪种破坏程度下可以实现自恢复、当需要人工引导干预时,在什么地方干预、怎么干预、干预到何种程度等几个基本问题。因此,本文综合利用叶绿素荧光诱导技术、机载高光谱监测技术、卫星遥感监测技术,多角度、多尺度实现半干旱矿区植被受扰动状况的快速准确提取,在对煤炭开采塌陷对植物损伤机理以及时空扰动规律研究的基础上,对上述四个基本问题展开研究,探索半干旱矿区植被引导型恢复模式,为绿色矿山建设、矿区植被重建利用提供方法论基础。论文取得如下研究结果:(1)采煤塌陷引起植物生长土壤立地条件破坏,植物叶片快速叶绿素荧光诱导曲线发生变形,植物叶片减少用于电子传递的能量份额,电子传递逐渐受到抑制,降低了植物叶片的光合作用效率;气孔限制值升高,气孔导度、光合速率和蒸腾速率均显着降低。拉伸区和压缩区植物损伤程度大于中性区植物损伤程度,应当优先考虑对压缩区、拉伸区受损植物进行引导恢复。塌陷区植物个体损伤原因在于,采煤塌陷在地表形成大量裂缝,破坏了土体结构,增加了土壤水分的蒸发面,加速了土壤水的散失,地下部分被抽空,潜水位埋深降低,影响地下水对地表水的补给。土壤含水量为影响半干旱煤炭开采塌陷区植物光合生理活动的最关键要素,植物生长开始受到胁迫和开始死亡的土壤含水量阈值分别为8.91%和4.87%。对土壤含水量小于8.91%的开采区域应提前采取相应的土壤技术提高土壤含水量,避免土壤含水量的减少导致植被迅速恶化。(2)利用机载高光谱数据,基于CARS特征选择数据,建立了植被叶片最大光合效率Fv/FM、相对含水量LRWC、叶绿素含量SPAD值高光谱反演模型,获取了植物光合生理相关要素在矿区尺度上的空间分布特征。植物叶片Fv/FM、LRWC、SPAD值的范围分别在0.764-0.822、35.81-52.32%和30.35-48.41 mg/g之间。采区地表植物生长受到煤炭开采扰动,原始植物空间格局被打破,部分地区出现植物退化,导致叶片光合生理要素空间变异程度增加,空间自相关性降低。由于土壤含水量在压缩区、拉伸区,中性区的空间异质性,采煤塌陷后地表“三区”植物叶片Fv/FM、LRWC、SPAD变化同样具有空间差异性,中性区植物叶片Fv/FM、LRWC、SPAD高于压缩区、拉伸区。最后根据FV/FM反演结果对采煤扰动区植物受胁迫区域进行了空间识别。(3)利用机载高光谱数据,基于完全约束最小二乘法对大柳塔矿区地表典型植物进行识别,并分析半干旱矿区煤炭开采对典型植物物种时空分布以及多样性的影响。通过与地面典型植物物种现场调查结果相比,利用完全约束最小二乘法分类精度总体为77.41%,矿区地表植物分布以灌木和草本植物为主,乔木所占的百分比最低、平均丰度值较小,乔木、灌木、草本植物的百分比分别为:15.94%、57.97%和26.09%。通过对采区与非采区主要植物多样性指数进行差异显着性分析,得到采区与非采区地表主要植物多样性受地表塌陷的扰动影响很小。采煤塌陷2-7年后,煤炭开采对乔木的影响较大,而抗塌陷干扰能力相对较强的灌草类植物重要值升高;塌陷8-12年后,随着生长立地条件恢复,植被群落结构趋于稳定,乔木植物重要值升高;塌陷12年后,塌陷区植物重要值慢慢趋于稳定。在半干旱矿区进行植被引导型恢复时,植被配置物种应优先选种抗逆性较强的草灌类植物,为了保证半干旱矿区植被恢复的可持续性,管护周期至少为12年。(4)从2001-2016年神东中心矿区植被NDVI整体呈物候性周期变化。通过对采区和非采区NDVI差异分析可知,采后5年内,相对于非采区,采区植被NDVI的变化表现为持续降低的过程;采后7年,采区植被开始恢复,NDVI差异值开始降低;至采后12年,采区植被NDVI基本能够恢复至非采区水平。神东中心矿区植被覆盖度呈升高与降低的区域面积分别占中心矿区总面积的72.35%和27.65%,年际间植被覆盖度以中、低幅度波动变化为主。地下水埋深4 m和8m是影响神东矿区植被NDVI的两个重要阈值,当地下水埋深大于4 m后,根系较浅的湿生植被演替为根系较长的旱生植被;当地下水埋深大于8 m后,旱生植被演替为沙生植被。地下水埋深对地表植被类型的影响主要通过影响土壤含水量来实现的。通过对比不同立地条件和不同植被覆盖度变化趋势下典型植物物种组成及丰度差异,以植被覆盖度升高区各植物物种平均丰度值作为植被重建丰度基准,得到不同立地条件下植被恢复重建丰度阈值在36.60%-45.30%之间,此外,还得到了不同立地条件植被重建乔木、灌木、草本植物配置差异性比例。(5)半干旱矿区受损植被引导型恢复应采用“自然恢复和人工修复并重、自然恢复为主、人工恢复为辅”的模式,首先对不同塌陷区位地面裂缝治理,然后以地下水位埋深、土壤含水量等关键限制性因素及相关阈值条件为根本出发点,并以限制因素是否达到阈值条件作为矿区植被引导恢复目标的合理程度判别的基本标准,进行重点、有针对性的引导恢复植被生长立地条件,最后依据本文得到的不同立地条件下植被恢复重建丰度阈值以及乔木、灌木、草本植物配置差异性比例,采用“恢复初期灌草先行、恢复后期乔灌草搭配”模式对植被群落结构进行恢复。研究构建了半干旱矿区受损植被引导型恢复模式,解答了植被在哪种破坏程度下可以实现自恢复、当需要人工引导干预时,在什么地方干预、怎么干预、干预到何种程度等几个基本问题,从而为半干旱矿山植被恢复提供方法论基础和实践依据。该论文有图66幅,表14个,参考文献368篇。

吴振华[7](2020)在《基于3S集成技术的半干旱草原区大型露天煤炭基地景观格局优化研究》文中认为人类有着数千年的煤炭开采与利用的文明史,在中国乃至世界,煤炭在能源利用中的重要地位一直不可撼动。中国东部煤炭资源逐渐枯竭,为进一步满足中国的能源需求,中国政府在“十二五”和“十三五”期间提出,要加快煤炭开发战略西移,在中国西北部重点建设9个大型煤炭基地,并加快大型煤炭基地外煤矿关闭退出。中国西北部半干旱草原地区具有酷寒、干旱、土壤贫瘠且蒸发强度大、植物生长期短等特点,草原生态本底条件极为脆弱,是景观生态退化极其严重的地区。中国大多数露天煤矿都位于干旱和半干旱地区,煤炭开发导致其景观结构缺损与景观功能失调等一系列景观生态干扰与生态环境问题。因此,有效的景观格局优化是非常有必要的,这包括以最小的人工干预实现最大限度的整体恢复、综合了解景观生态问题以及采矿对景观生态影响的复杂性。然而,煤炭露天开采对半干旱草原景观格局的影响规律不清,导致景观格局优化方法不能有针对性地解决半干旱草原区大型露天煤炭基地的景观生态问题。本研究的目标是:1、研究基于引导型自修复的矿区景观格局优化理论与方法;2、完善半干旱草原区大型煤炭基地景观分类体系;3、对研究区进行充分的景观生态调查;4、明确半干旱草原区大型煤炭基地景观生态健康的内涵、标准、评价指标体系与模型;5、深入研究煤炭露天开采对草原景观格局的影响规律;6、确定半干旱草原区大型煤炭基地景观格局优化方案。最终得出以下研究成果:(1)本研究遵循大型煤炭基地景观分类的原则,在发生法土地分类的基础上,充分考虑土地的生态属性,融入景观生态学的格局、过程与功能理论,采用自上而下的分解式分类法,借鉴生物学分类的阶层命名法,最终构建了半干旱草原区大型煤炭基地景观分类体系,其中景观界4类,景观纲16类,景观科62类,景观种超过200类。与此同时,本研究在景观分类与调查的基础上,对2002-2017年间锡林浩特市胜利大型露天煤炭基地景观格局演变进行了深入的分析,分析结果表明:1)人类的各种干扰导致了草原景观斑块数量逐渐增多、景观逐渐破碎化、景观连通性逐渐下降、景观多样性逐渐升高、景观形状趋于复杂而不规则、景观斑块越来越离散、景观异质性与复杂性增强、景观稳定性逐渐下降;2)草原景观是本研究区的基质,矿业景观、城镇景观、工业仓储景观以及路网景观逐年扩张并占用了大量的草原景观,导致草原景观逐渐减少,不健康草原景观逐年增加。(2)本研究提出了基于Albedo-MSAVI特征空间的半干旱草原区荒漠化指数(Semi-Arid Steppe Desertification Index,SASDI)模型。结果表明,SASDI模型与土壤表层有机质具有很高的相关性(R2=0.7585),该模型充分运用了多维遥感信息,有利于半干旱草原区荒漠化的定量分析与持续监测。与此同时,本研究提出了基于SI-Brightness特征空间的半干旱草原盐渍化指数(Semi-Arid Steppe Salinization Index,SASSI)。结果表明,SASSI模型与土壤表层含盐量具有很高的相关性(R2=0.7698),并充分运用了多维遥感信息。SASSI模型能够精确、有效而方便地获取半干旱草原的土壤盐渍化信息。(3)本研究构建了适用于半干旱草原大型煤炭基地景观生态健康评价的模型——CVORE(Condition,Vigor,Organization,Resilience,and Ecosystem Services Function),并以此为基础提出了半干旱草原大型煤炭基地景观生态健康评价的指标体系,明确了半干旱草原大型煤炭基地景观生态健康的内涵,制定了半干旱草原大型煤炭基地景观生态健康的标准。与此同时,本研究在景观生态健康评价的基础上,还进行了煤炭露天开采对半干旱草原景观生态健康的影响研究。研究结果表明:1)轻度不健康景观主要位于人类干扰较多的区域周边,中度不健康景观主要是矿区工业广场景观,重度不健康景观基本都是采坑,各健康等级的占比呈现“两头少,中间多”的正态分布模式,不健康景观逐年增多,健康景观逐渐减少;2)研究区景观生态健康的时空分布特征极其明显而单一,水含量高的区域景观生态健康状况极好,人类干扰较多的区域景观生态健康状况较差;3)根据大型露天煤炭基地的开发方式、煤炭露天开采过程中形成的扰动景观类型以及研究区景观生态健康的演变过程,本研究将煤炭露天开采对健康草原的影响分为四种类型:扰动退化型、扰动退化恢复型、稳定健康型和波动型;4)影响研究区草原景观生态健康的空间分布与变化的驱动因素有水、露天矿、城市、农业、工业、路网以及高程,煤炭露天开采对草原景观生态健康有着显着的影响。(4)提出了大型露天煤炭基地对半干旱草原景观生态影响的概念模型,厘清了矿区景观格局优化的目标、原则和理论,在此基础上提出了基于引导型自修复的矿区景观格局优化理论与方法。在进行锡林浩特市胜利大型煤炭基地引导型自修复的研究过程中,提出了修正的景观干扰指数,并结合景观生态健康评价、缓冲区分析、景观生态功能贡献率,确立了大型露天煤炭基地对半干旱草原景观生态健康影响的空间分布,以此为基础提出了工程修复斑块、人工维护斑块和自然修复斑块三个景观生态修复区及相应的引导型自修复的建议,最终以最小的成本达到整体景观功能提升与可持续发展的目的,实现“景观格局优化”。在进行锡林浩特市胜利大型煤炭基地景观格局优化的研究过程中,通过构建基于多规融合的阻力面,采用最小累积阻力模型进行景观格局优化,在新构建的“源”景观、生态廊道、生态节点以及人工湿地的基础上提出了“一环、两纵、两横、八核心、十节点、多廊道”的景观格局优化模型,本研究所提出的“景观格局优化”模型立足于大型煤炭基地景观生态固有的修复能力以及采矿对景观生态的影响过程,通过构建潜在的景观格局“帮助”大型煤炭基地自修复,使受损景观生态通过自身的主动反馈,不断自发地走向良性循环和恢复,实现“引导型自修复”。与此同时,本研究将煤炭基地、矿群以及矿区三个尺度的一系列修复策略相结合,提出了多尺度引导型自修复的景观格局优化体系。在景观生态学、测绘科学与技术、土地资源管理、地理学、生态学、露天采矿学、恢复生态学、矿山生态学、土地复垦与生态重建等多个学科的基础上,以锡林浩特市胜利煤田这一典型的半干旱草原区大型煤炭基地为例,提出了基于引导型自修复的矿区景观格局优化理论与方法,以及“大型煤炭基地景观分类、调查与监测→景观生态健康评价→煤炭露天开采对半干旱草原景观格局的影响→基于引导型自修复的景观格局优化”的研究体系,旨在为世界各地矿业城市、大型煤炭基地等类似研究区的景观分类、景观生态评价、采矿对景观生态的影响规律、景观格局优化、景观生态规划、生态规划、城市规划、景观生态修复等提供借鉴。该论文有图52幅,表24个,参考文献390篇。

刘建康[8](2019)在《毛乌素沙地油蒿群落退化与封育恢复特征及机制研究》文中进行了进一步梳理油蒿群落是毛乌素沙地分布面积最大和最具代表性的群落类型,对该地区生物多样性保护、防沙治沙、生态系统稳定性维持及退化草地恢复等发挥至关重要的作用。但近年来由于多种因素影响该地区油蒿群落出现严重退化,封育作为我国干旱、半干旱地区植被恢复的主要措施之一,在该地区应用广泛,但目前缺乏对油蒿群落退化及恢复过程的综合对比研究。基于以上背景,本文通过在宁夏盐池县典型油蒿群落分布区布设不同退化程度及封育时间的样地,对油蒿种群、群落及土壤进行同步调查,系统分析油蒿种群数量及结构特征、种群空间格局、植被群落特征、土壤理化性质等,综合探讨油蒿群落退化及恢复的特征与机制,研究结果可为该地区退化油蒿群落植被恢复与管理提供理论指导。主要研究结论如下:(1)草地退化影响种群更新与生长,不仅降低了油蒿种群密度、盖度及地上总生物量,还导致个体高度、冠幅及生物量的下降,改变了种群的年龄组成,使得幼苗及成株变少,枯死植株增多,进而影响种群结构。退化样地种群结构变化趋势为:衰退型(轻度退化)→增长型(中轻度退化)→稳定型(中度退化)→衰退型(极重度退化)。封育后随着幼苗的大量生长发育,个体的冠幅、高度及生物量逐渐降低,油蒿种群矮小化,在封育10年时种群盖度、密度及地上总生物量达到峰值,之后有减小的趋势。封育样地种群结构变化趋势为:增长型(封育5年)→衰退型(封育10年)→稳定型(封育15年)→衰退型(封育25年)。(2)油蒿种群具有强烈的空间依赖性,具有斑块状和条带状的分布特点,在退化及恢复过程中种群空间异质性会发生显着变化,总体表现为:退化样地>封育样地;偏重度退化样地>偏轻度退化样地;长期封育样地>短期封育样地。(3)油蒿种群、幼苗及成株多在小尺度聚集(0-2m)、大尺度(20-25m)随机或均匀分布,而半死株及死株在不同尺度多随机或均匀分布,封育导致油蒿幼苗聚集尺度增大。幼苗与成株多在小尺度上呈正相关,而与半死株、死株多相互独立。四种优势伴生种群(草木樨状黄芪Sophora alopecuraoides、苦豆子Astragalus melilotoides、老瓜头Cynanchum komarovii、沙生针茅Stipaglareosa)在空间上呈不同程度的小尺度聚集分布,且不同种群在同一样地中聚集尺度存在差异,总体表现为植被状况相对较好的封育样地聚集尺度大于较差的退化样地。四种伴生种群多与油蒿种群在小尺度相互竞争、大尺度相互独立。(4)研究区内菊科、禾本科、藜科、豆科植物占物种总数的70%以上,且主要以多年生草本为主,一年生草本次之,而灌木所占比重最小,草地退化及恢复过程中各样地物种组成会发生显着变化。不同的处理显着影响(P<0.05)群落盖度、高度、密度、地上及地下生物量、根冠比、枯落物重量、丰富度指数R、多样性指数SW、SP及均匀度指数E等指标,随着退化程度加剧枯落物逐渐降低,根冠比逐渐升高,E指数变化不显着,而其它各群落特征指标及群落稳定性均表现出先增加后降低的趋势,且在中度退化样地最高。封育后植被群落逐渐恢复,各植被特征在短时间内显着改善(P<0.05),群落稳定性也随之增强,封育10年是一个转折点,之后群落的各个特征指标将逐渐降低,而群落稳定性在封育15年时最强。(5)不同处理(P<0.01)及土层(P<0.05)显着影响各土壤理化性质,各土壤理化性状之间具有一定的相关性。随着退化程度加剧土壤含水量先增后减,土壤容重及砂粒含量逐渐增加,而土壤黏粒、粉粒及各化学性状(全氮、全磷、速效氮、速效磷、速效钾)逐渐降低。封育后土壤黏粒、粉粒、含水量及各化学性状的含量均逐渐增加,但封育25年后土壤含水量将有所降低。在植被退化及恢复过程中各土层土壤综合肥力会发生变化,总体变化趋势为:长期封育样地>偏轻度退化样地>短期封育样地>中度退化样地>偏重度退化样地。在植被退化及恢复过程中土壤结皮的波动显着影响各土壤理化性质含量,且不同类型结皮对土壤理化性质的影响不同。(6)RDA分析结果表明,前两轴物种-土壤性状关系积累贡献率为78.95%,说明前两轴已能很好的解释土壤性状与植被群落间的关系,不同土壤性状对该地区群落的影响具有一定差异。土壤含水量、土壤有机质、容重及土壤黏粒含量对植物群落及样地影响较大,而土壤速效氮及pH值的影响较小。

闫龙[9](2018)在《半干旱区农牧交错带生态格局研究 ——以西辽河平原为例》文中研究说明半干旱区农牧交错带既是我国一条典型的生态脆弱带,也是重要的生态屏障,其生态环境的好坏不仅是区域经济发展的基础和保障,更是关系着黄河、海河流域、京津冀生态安全的屏障。半干旱区水文循环的自然属性决定了生态系统的基本格局,其自然生态是受地下水支撑的草原植被,生态系统的空间格局和景观变化反映了地下水空间分布的格局演变。草原生态代表着半干旱区生态系统的自然属性,是支撑这个区域的生态基础,草原生态安全不仅仅关系到牧区本身,也极大影响整个区域的生态质量和安全稳定。由于在沙半干旱区地草原进行灌溉农业开发,形成了独有的农牧交错带,西辽河平原属于草原农牧业此消彼长的典型地区。随地下水开采强度增大、灌溉面积扩大,西辽河平原在最近的十年间耕地面积已超过了草原。这种生态格局的逆转,导致区域生态系统自然属性大幅下降,水土资源面临枯竭、可再生能力下降,对整个区域的经济社会与生态安全留下重大隐患。首先,西辽河平原草地面积不断被压缩,目前草原面积已不足西辽河平原面积的33%,直接导致许多适应小生境的植被消亡,草原植被物种多样性下降。其次,大规模井灌导致地下水位整体下降,灌区周边的草原也受到影响,出现草原植被演替。这显然不符合生态文明建设的国策,需要研究能够保障生态安全的农牧区新型生态格局,提出耕地草地合理比例,这是影响深远的重大生态安全问题。在《农业部关于北方农牧交错带农业结构调整的指导意见》中,明确提出农业结构调整的必要性,在《内蒙古自治区生态环境保护“十三五”规划》中也明确提出了要“针对目前人为活动影响较小、生态良好的重点生态功能区,加大自然植被保护力度,科学开展生态退化区恢复与治理”。因此亟待建立一套以保证生态系统的自然属性为目标的半干旱区农牧交错带区域生态结构评价方法,并以西辽河平原为例分析农牧区生态格局结构比例。针对半干旱区水生态文明建设面临的水文水资源—生态—经济社会发展面临的结构性矛盾,以保护草原生态系统自然属性为目标的半干旱区草原农牧交错带合理生态格局研究,对科尔沁草原现状的研究是重中之重。首先,科尔沁草原的保护与重建取决于对现有草原植被的深刻认识;其次,作为科尔沁草原的植被标志,必须对现有草原植被群落进行全面深入研究;第三,作为驱动因子,必须认清地下水位调控管理对草原植被群落格局的决定性影响;最后,以现有草原为基础,提出以调整农牧业结构和地下水调控为依据的西辽河平原草原重建与保护方案建议。主要研究成果如下:(1)对西辽河平原草原植被群落演替历史进行了系统深入研究为了研究西辽河平原的自然属性,对截止到1980年代的西辽河平原区植被物种组成情况各类调查考证资料进行了系统梳理,作为自然生态的本底基础。1980年代初,西辽河平原区有各类植物917种,分属于108科,412属。通过对西辽河平原区的植被分布进行GIS上图处理,对群落分布范围、面积、斑块个数、土壤类型、物种组成进行分析。植被面积48930.07km2,物种密度约19种/千km2,形成25个主流群落。西辽河平原植被群落分布具有极强的地域性,覆盖全境的植物种类仅有128种,占物种总数的14%;而50%的面积上散布了 85.3%的物种。这就意味着随着草原面积的减少,植被的物种多样性也几乎同步程度地减少,许多适宜局地生境的物种随之消失。也可推测,如果能够保持一半的草原面积,科尔沁草原的物种多样性能够得到较满意的保障。这也暗示,如果设立恢复天然草原面积使其占地达到50%的目标,通过唤醒土壤中残留种子,或许使某些物种能够得到重生,从而达到增强现有物种多样性的效果。(2)西辽河平原天然草原植被群落现状调查研究自1980年代以来,伴随着灌溉面积的发展,科尔沁草原的草地面积由4.89万km2,萎缩到2016年的2.24万km2,其中包含大量人工草地和演替退化草场,原生天然草地面积不足1万km2,并且破碎化严重。现存较为完整连片的6702.89 km2是现状研究的对象。为此进行了多次野外调查,收集了大量第一手资料。物种多样性由917种下降到245种,分属19个群落,种群密度由大约19种/103km2下降到不足12种/103km2。科尔沁草原面积的萎缩使得物种大量消亡灭绝,并且多样性的下降速度高于草地面积减少速度。除了植被群落类型发生了巨大变化,通过对比历史与现状植被群落组成,可以发现同一群落在80年代的物种组成与现状相比也发生了很大变化,主要体现在组成群落的植物物种类的减小。结合历史调查分析推测:当天然草地面积缩减到50%,即大约2.45万km2时,是植被多样性急剧减少的转折点。(3)西辽河平原天然草原植被群落演替分析导致原生草原退化来自两个方面:一是灌区开发,土地利用侵占了大量草地;二是随着地下水位下降,迫使草原植被群落发生改变,出现了演替物种。通过对比80年代和现状年的植被群落情况,从植被群落面积、植被物种多样性演变、植被群落类型演变以及植被群落物种组成分析了西辽河平原天然草原植被群落的演替,发现了不同演替阶段的物种,反映了科尔沁草原面积退化萎缩过程。(4)农牧交错带区域生态结构评价路径根据恢复生态学原理,以现有天然草地植被群落为基础,通过退耕和恢复地下水潜流场,调升地下水位,以群落强势增长的优势,进行空间拓扑扩张。根据西辽河平原草原植被群落演替历史得到的启示,草原面积恢复到2.45万km2以上,可能获得植被物种多样性的加强。空间拓扑的方法途径:1)用景观生态学方法初步建立草地耕地比例关系,提出保持自然属性最低限度总比例原则;2)在对西辽河平原草原植被群落演替分析的深刻认知的基础上,调整合并生态面积;3)考虑生态景观的连续性,保证自然生态景观连通、防止破碎化,进一步调整合并生态面积。以地下水补给植被临界埋深对应,分析地下水潜流场支撑生态格局的合理性。(5)地下水支撑的西辽河平原农牧交错带生态格局研究现有天然草原植被作为草地生态恢复的基因库,以天然草原为基础向外扩张的原则,运用景观生态学中“源-汇”理论方法开展西辽河平原区农牧生态格局调整优化。运用MODCYCLE模型建立西辽河流域水循环模拟模型,模拟得到2001-2014年西辽河平原地下水流场。通过叠加天然草原扩张区域和西辽河平原地下水位等值线图,以来分析地下水潜流场支撑农牧区生态格局的合理性。按地下水位值<3m、3-4m、>4m将扩张区域地下水条件划分为支撑,基本支撑,不支撑。分析了不同地下水条件下西辽河平原农牧交错带合理生态格局的近期目标、中期目标和远期目标,从而建立一套以保证生态系统的自然属性为准则的农牧交错带区域生态结构评价方法。远期目标显示,经过生态格局调整后天然草原面积可望恢复到22455.75 km2,另有灌溉草地2.1万km2,农田面积13753km2,农牧面积比结构由现状的1.04减小到0.32。(6)调整西辽河平原生态格局的合理性分析利用源汇方法进行现有物种群落空间扩张是以地下水潜流场为驱动力,现有植物群落随地下水位回升以一定规则扩张复制。根据西辽河平原草原植被群落的物种局地特性,在被现有群落强势扩张“入侵”的区域,物种多样性将会出现两个方面的变化:一是部分物种适应不了新的生境而变异或消亡;二是新恢复的区域其土壤中残留或处于休眠状态的当地物种的种子,在地下水条件恢复后被激发得以重生。最终,新恢复的草地形成一种既不同于现状,也不同于从前的新型群落,植被物种多样性总体上呈现平缓增加的趋势,使得草原的自然属性得到极大提高。(7)提出了西辽河平原草原重建与保护方案建议提出以调整农牧业结构和地下水调控为依据的西辽河平原草原重建与保护方案。即“退耕”、“还水”、“还草”:调整农业灌溉面积,恢复地下水位,修复草原生态,三个环节缺一不可。

陈晓江[10](2016)在《鄂尔多斯高原湖泊动态及其生态系统功能研究》文中研究指明湖泊是地球表层各级系统、各级圈层相互作用的联结点,是地球水圈不可缺少的重要环节。湖泊具有调节区域气候、记录区域环境变化、维持区域生态系统平衡和繁衍生物多样性的特殊功能。盐碱湖泊是湖泊发育的后期阶段,约占地球湖泊总数的一半,特别是干旱-半干旱地区,盐碱湖泊数量较多,对维持区域生态系统结构和生产力有着决定性作用。鄂尔多斯地区是我国两大盐碱湖泊群分布区之一,该地区是一敏感、特殊的生态过渡带,是我国干旱-半干旱区相对独立的自然单元。本课题选取鄂尔多斯地区盐碱湖泊群为研究对象,进行了湖泊动态及其驱动因子的研究,研究分析了湖泊生态系统结构和功能,并且应用熵理论分析了盐碱湖泊生态系统的脆弱性。首先运用遥感数据(RS)结合地理信息系统(GIS),研究分析了鄂尔多斯地区湖泊动态变化特征;其次,在生态学、景观生态学、气候学、生物统计等学科理论的具体指导下,分析研究了气候变化和人类活动对湖泊动态变化的影响;第三,研究分析了鄂尔多斯地区典型湖泊水体中的浮游植物物种构成、密度和群落结构,深入分析了浮游植物功能群动态以及与环境因子的相关性;第四,引用熵理论分析评价盐碱湖泊生态系统的脆弱性。研究得出如下结论:1、鄂尔多斯盐碱湖泊群动态变化特征:湖泊面积和数量变化的总趋势是减少的,在研究时间序列范围内,从1980年~2012年,湖泊面积大于1 Km2湖泊数量由83个减少到57个,湖泊消失或干涸共26个,损失率达31.33%;湖泊水域面积由334.52 Km2减少到234 Km2,湖泊面积损失100.52Km2,损失率达30%。从1980年~1995年,湖泊数量由83个增加为93个,新增湖泊数量为10个;湖泊面积由334.52 Km2增加到372.13 Km2,增加面积37.61 Km2。从1995年~2012年,湖泊数量由93个减少到57个,湖泊消失数量为36个;湖泊面积由372.13Km2减少为234 Km2,减少量为38.13 Km2。湖泊这种动态特征是气候变化和人类活动干扰两大因素的共同作用的结果。2、分析湖泊动态的主要驱动因子之一气候驱动因子,研究课题选取了1960-2012年鄂尔多斯地区的气候数据进行统计分析,得到结论为鄂尔多斯区域气候总趋势趋向变暖,研究区域气温动态变化幅度增幅范围在0.45℃/10a~0.6℃/10a之间,明显高于全国平均水平的0.208℃/10a;降水量总体趋势呈减少趋势,在1960s降水量波动较大,从1968年~2012年的时间序列上,降水量的整个趋势的线性拟合递减率值为4.16mm/10a。灰度关联分析,降水量、气温与湖泊面积变化具有较高的关联度值。3、人类活动干扰是湖泊动态变化的主要驱动因子之一,土地是人类生存的基础资源,所以土地利用动态能够充分揭示出人类活动干扰的强度。通过对鄂尔多斯地区土地利用动态的研究,得出结论:在1980-2012年鄂尔多斯地区增加的土地覆盖类型主要为草地、林地、建设用地,增加的数量分别为:1367.03 Km2、424.96 Km2、204.46 Km2,减少的土地覆盖类型为未利用土地和耕地,减少的数量分别为1991.57Km2、156.291Km2;面积变化显着的土地覆盖类型是草地和未利用土地,在33年的时间序列上,草地面积增加了1367.03 Km2,未利用土地类型减少了1991.57Km2。其中湖泊面积呈减少趋势,通过不同时间序列上土地动态度分析,湖泊动态变化主要在1995-2012年时间序列上,动态度为3.3%。4、景观格局分析可以较好地在区域尺度上揭示鄂尔多斯地区湖泊的动态特征。通过景观格局分析得出:鄂尔多斯地区以草地和沙地为主要景观构成,其次为耕地、林地,总体上是以草地和沙地两大类型构成的基质,辅以耕地和林地的交错景观格局,其他景观类型所占比例很小,构成形似补丁状或带状散布于其中。鄂尔多斯地区景观结构主要是草地、沙地、平原区的耕地、盐碱地为主,其景观功能以此结构类型为基础的;其中湖泊景观比例值很小分别为0.0044(1980年)、0.005(1995年)、0.0041(2012年),三期的鄂尔多斯地区湖泊景观破碎度最小值为1.1(1995年),平均斑块面积最大值为0.91Km2(1995年)。5、在区域尺度上研究鄂尔多斯地区盐碱湖泊生态系统,选取了六个典型湖泊,通过分析湖泊水体中的浮游植物群落来揭示湖泊生态系统结构和功能过程。通过对采集水样在实验室镜检,共鉴定出水体中浮游植物种类为5门28属40种,其中蓝藻门8属11种,绿藻门11属16种,硅藻门7属9种,裸藻门1属3种,甲藻门1属1种;浮游植物优势种是广生性种类,六个样湖浮游植物种类分布依次为:浩通音查干淖尔5门20属25种,红碱淖5门19属24种,其和淖尔4门15属16种,察汗淖尔3门8属10种,哈日芒乃淖尔2门3属4种,巴嘎淖尔2门2属3种。湖泊水体pH为浮游植物密度的主要限制因子,湖泊水体盐度是浮游植物物种多样性的主要限制因子。6、研究鄂尔多斯地区盐碱湖泊生态系统结构和功能,选取红碱淖和浩通音查干淖为研究对象,采用野外实验生态调查方法,结合浮游植物功能群和典范对应分析方法,进行了浮游植物群落季节动态分析以及与环境因子的关系。研究结果为其中红碱淖浮游植物种群按照浮游植物功能群划分方法,共划分为14个功能群:x1/x2/w1/TD/C/J/M/G/Wo/MP/H1/P/S2/Tc,季节变化动态为:J/X1/x2/W1/P/TD/C/M(夏季)→G/P/X1/W1/Wo/MP/H1/TD/S2/Tc(秋季);浩通音查干淖尔浮游植物划分为8个功能群:X1/F/P/D/W1/Wo/J/Tc,其中季节动态为X1/Tc/J/P/W1/F/D(夏季)→X1/Tc/J/P/W1/F/D/Wo(秋季)。红碱淖和浩通音查干淖尔浮游植物功能群主要是受到pH、总离子度(Tds)、电导率(CON)升高的胁迫,其中pH是影响浮游植物功能群分布的主要因子。7、湖泊生态系统是多因素相互作用的复杂系统,系统结构中各组成成分的相互作用是非线性的,其动态是一个由信息流驱动下各组成成分与环境耦合在一起的自组织过程,熵是复杂系统正确分析中的主要理论工具。为了科学地分析盐碱湖泊生态系统状况,所以在评价鄂尔多斯盐碱湖泊生态系统脆弱性中引用熵函数理论分析是科学的,通过构建评价指标体系,运用综合信息熵模型,得到结论为:鄂尔多斯典型湖泊综合信息熵值依次为HT(浩通音查干淖尔)<BG(巴嘎淖尔)<HJ(红碱淖尔)<QH(其和淖尔)<HR(哈日芒乃淖尔)=CH(察汗淖尔),即生态系统脆弱性程度的比较顺序。根据关注因子不同,分别作了关注多个因子和不同因子给予不同权重时的综合信息熵分析,结果显示为:当考虑浮游植物和湖泊面积两项指标时,熵值大小顺序为:QH<CH<HR<HT<BG<HJ, HJ(红碱淖)熵值最大。通过比较鄂尔多斯地区1980年、1995年、2012年土地利用类型结构的信息熵,依次为1980年(2.74)、2012年(2.71)、1995年(2.54),年际之间的熵值差值很小,说明了该地区土地利用多样性程度近33年里是相似的,但是根据信息熵计算其土地利用均匀度为:1980年(0.598)、1995年(0.56)、2012年(0.6),数值较大,说明土地利用类型有较大的波动,人类活动加强了该区域湖泊生态系统脆弱性程度。鄂尔多斯地区盐碱湖泊动态变化主要是气候变化和人类活动干扰的结果,其变化导致湖泊生态系统结构和功能的变化,尤其人类活动干扰增加了湖泊生态系统脆弱性,鉴于湖泊对于该地区生态系统的无可替代的重要性,应加强湖泊生态系统的恢复和保护。通过本研究更加系统地掌握内陆干旱区盐碱湖泊的变化与驱动机制,为干旱-半干旱区内陆盐碱湖泊生态系统理论作出重要补充,加强了物理学、生物学、生态学、遥感、地理信息系统、景观生态学等诸多学科理论在生态学领域的综合应用,为干旱-半干旱区湖泊的科学研究提供了新的思路,以期为干旱——半干旱区生态文明建设提供科学数据支持。

二、Conservation and restoration of degraded ecosystems in arid and semi-arid areas of northwest China(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、Conservation and restoration of degraded ecosystems in arid and semi-arid areas of northwest China(论文提纲范文)

(1)内蒙古赛罕乌拉草地不同利用方式下蒸散发与生态效应研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究目的与意义
    1.2 研究进展
        1.2.1 蒸散发估算方法
        1.2.2 草地蒸散发的影响机制
        1.2.3 不同草地利用方式的生态效应
    1.3 研究内容
        1.3.1 草地蒸散发及生长季的变化特征
        1.3.2 大尺度植被蒸散发与水分盈亏的时空变化及植被修复研究
        1.3.3 不同保护利用方式下的草地蒸散发的变化特征及草地保护与利用研究
        1.3.4 不同草地保护利用模式与恢复途径的生态效应评估
    1.4 本论文关注的科学问题
    1.5 技术路线
第二章 数据与方法
    2.1 研究区概况
        2.1.1 研究区地理位置及特点
        2.1.2 植被与土壤
        2.1.3 气候特征
    2.2 观测与仪器
        2.2.1 草甸草原的通量观测
        2.2.2 草地生物多样性观测
    2.3 其他地面数据
        2.3.1 气象数据
        2.3.2 遥感数据
        2.3.3 土地利用数据
    2.4 湍流资料质量控制
    2.5 研究方法
        2.5.1 草地湍流通量观测
        2.5.2 生物多样性计算
        2.5.3 基于SEBAL模型的实际蒸散发模拟
        2.5.4 雨水资源化潜力
第三章 草地生长季气象因子及蒸散发的变化特征
    3.1 草地气象因子的变化特征
        3.1.1 土壤湿度与降雨变化特征
        3.1.2 土壤温度变化特征
        3.1.3 空气温湿度变化特征
        3.1.4 风速和风向变化特征
    3.2 草地下垫面辐射与能量平衡
        3.2.1 草地下垫面小气候平均日变化
        3.2.2 草地下垫面辐射平衡与能量闭合
        3.2.3 草地下垫面净辐射与可能蒸散量
    3.3 碳通量日变化特征
    3.4 草地蒸散发的变化特征
    3.5 本章小结
第四章 大尺度植被蒸散发与水分盈亏的时空变化及植被修复研究
    4.1 区域植被类型及变化
    4.2 区域实际蒸散发时空变化特征
    4.3 区域雨水资源化潜力指数时空变化特征
    4.4 降水与气温对区域蒸散发和雨水资源化潜力影响
    4.5 区域植被的合理保护与修复
    4.6 小结
第五章 不同保护利用方式下的草地蒸散发的变化特征及草地保护与利用研究
    5.1 植被类型变化
    5.2 实际蒸散发与雨水资源化潜力指数时空变化特征
        5.2.1 实际蒸散发时空变化特征
        5.2.2 雨水资源化潜力指数时空变化特征
    5.3 不同保护利用方式草地的蒸散发、雨水资源化潜力指数和蒸降差的变化
        5.3.1 蒸散发的变化
        5.3.2 雨水资源化潜力指数的变化
        5.3.3 蒸降差的变化
    5.4 群落特征对不同保护利用方式下的草场蒸散发的影响
        5.4.1 不同保护利用方式下草地多样性对蒸散发的影响
        5.4.2 不同利用方式下草地均匀度对蒸散发的影响
        5.4.3 不同利用方式下草地群落盖度对蒸散发影响
        5.4.4 不同利用方式下草地群落生物量对蒸散发的影响
    5.5 草地的保护与利用
    5.6 小结
第六章 不同草地保护利用模式与恢复途径的生态效应评估
    6.1 多样性效应---不同草地利用模式与恢复途径群落功能群多样性变化
    6.2 结构效应---不同草地利用模式与恢复途径的群落功能群组成变化
    6.3 质量效应---不同草地保护利用模式与恢复途径草场质量变化
    6.4 功能效应---不同草地利用模式与恢复途径草场功能变化
    6.5 防风固沙效应---不同草地利用模式与恢复途径防风固沙功能影响
    6.6 小结
第七章 结论与展望
    7.1 主要结论
    7.2 研究特色与创新
    7.3 不足与展望
附表
参考文献
作者简介
致谢

(2)黄土高原植被恢复过程中土壤碳氮水耦合机制及恢复力研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景与意义
    1.2 国内外研究进展
        1.2.1 植被恢复过程中土壤碳、氮、水动态变化
        1.2.2 植被恢复过程中土壤碳、氮、水耦合关系
        1.2.3 植被恢复过程中土壤恢复力
    1.3 研究中亟待解决的问题
第2章 研究内容与方法
    2.1 研究目的与内容
        2.1.1 研究目标
        2.1.2 研究内容
    2.2 研究思路与技术路线
    2.3 研究区概况
    2.4 数据获取
        2.4.1 文献整合数据
        2.4.2 历史积累数据
        2.4.3 野外实测数据
    2.5 数据处理与统计方法
第3章 植被恢复过程中土壤有机碳固存特征
    3.1 引言
    3.2 材料与方法
        3.2.1 数据获取
        3.2.2 数据计算
    3.3 结果与分析
        3.3.1 不同植被类型土壤有机碳储量剖面分布特征
        3.3.2 土壤有机碳固存对不同植被类型的响应
        3.3.3 土壤有机碳固存对植被恢复年限的响应
        3.3.4 土壤有机碳固存对初始有机碳储量的响应
        3.3.5 不同气候带土壤有机碳固存差异性分析
        3.3.6 浅层与深层土壤有机碳固存的关系
    3.4 讨论
        3.4.1 不同植被类型对土壤有机碳固存的影响
        3.4.2 恢复年限、初始有机碳储量、气候带对土壤有机碳固存的影响
        3.4.3 本研究对生态系统管理及全球变化的借鉴价值
    3.5 本章小结
第4章 植被恢复过程中土壤氮固存特征
    4.1 引言
    4.2 材料与方法
        4.2.1 数据获取
        4.2.2 数据计算
    4.3 结果与分析
        4.3.1 不同植被类型下土壤氮储量及剖面分布特征
        4.3.2 土壤氮固存对退耕还林草的响应特征
        4.3.3 土壤氮固存对植被恢复年限的响应
        4.3.4 土壤氮固存的驱动因素
        4.3.5 浅层与深层土壤氮固存相关关系
    4.4 讨论
        4.4.1 退耕还林草后深层土壤氮储量增加机制探讨
        4.4.2 植被恢复过程中土壤氮固存驱动因素
        4.4.3 深层土壤氮素累积对缓解植被生长氮限制潜力的探讨
        4.4.4 本研究对生态系统管理及全球变化的借鉴价值
    4.5 本章小结
第5章 植被恢复过程中土壤水分变化动态
    5.1 引言
    5.2 材料与方法
        5.2.1 数据获取
        5.2.2 数据计算
    5.3 结果与分析
        5.3.1 不同植被类型土壤水分含量
        5.3.2 不同植被类型土壤水分含量时间变化模式
        5.3.3 土壤水分与年均降雨量的关系
        5.3.4 不同植被类型剖面土壤水分含量变化速率
    5.4 讨论
        5.4.1 土壤水分对植被类型的响应
        5.4.2 植被恢复过程中土壤水分对恢复年限的响应
        5.4.3 降雨梯度上土壤水分的变化特征
        5.4.4 植被恢复过程中水分降低速率
        5.4.5 本研究对植被恢复管理的借鉴价值
    5.5 本章小结
第6章 植被恢复过程中土壤碳氮耦合关系
    6.1 引言
    6.2 材料与方法
        6.2.1 退耕植被土壤碳、氮、碳氮比数据库构建
        6.2.2 顶极天然植被土壤碳、氮、碳氮比数据库构建
        6.2.3 数据计算
    6.3 结果与分析
        6.3.1 不同植被类型土壤碳、氮和碳氮比变化特征
        6.3.2 不同植被类型土壤碳氮比剖面分布特征
        6.3.3 不同植被类型土壤碳氮比在年限梯度上的变化
        6.3.4 有机碳、全氮、碳氮比与气候因子的关系
    6.4 讨论
        6.4.1 土壤碳氮耦合关系对植被类型的响应
        6.4.2 气候梯度对土壤碳氮耦合关系的影响
    6.5 本章小结
第7章 植被恢复过程中土壤碳水耦合关系变化
    7.1 引言
    7.2 材料与方法
        7.2.1 数据获取
        7.2.2 顶极天然植被土壤有机碳、水分数据库
        7.2.3 土壤碳水耦合表征方法
        7.2.4 构建基于耦合协调理论的碳水关系评估标准
    7.3 结果与分析
        7.3.1 不同植被类型各个土层土壤碳水耦合协调度特征
        7.3.2 不同恢复阶段土壤碳、水耦合协调度动态变化
        7.3.3 土壤碳水耦合协调度与气候因子的关系
    7.4 讨论
        7.4.1 不同植被类型对土壤碳水耦合关系的影响
        7.4.2 土壤碳水耦合关系的一般变化模式
        7.4.3 气候因子对土壤碳水耦合关系的影响
        7.4.4 土壤碳水耦合关系对植被恢复的启示
    7.5 本章小结
第8章 植被恢复过程中土壤碳氮水恢复力
    8.1 引言
    8.2 材料与方法
        8.2.1 数据获取
        8.2.2 黄土高原生物气候带划分
        8.2.3 基于两个本底的土壤碳、氮、水恢复力评价体系构建
        8.2.4 数据计算
    8.3 结果与分析
        8.3.1 不同植被类型土壤碳氮水恢复力指数
        8.3.2 不同恢复阶段、不同气候带土壤碳氮水恢复力指数
        8.3.3 土壤碳氮水恢复力指数变化速率
        8.3.4 土壤碳氮水恢复力指数与降雨和温度梯度的关系
    8.4 讨论
        8.4.1 植被类型对土壤碳氮水恢复力的影响
        8.4.2 植被恢复年限对土壤碳氮水恢复力的影响
        8.4.3 气候因子对土壤碳氮水恢复力的影响
        8.4.4 深层土壤功能恢复力对生态恢复的指示作用
    8.5 本章小结
第9章 结论与展望
    9.1 主要结论
    9.2 创新点
    9.3 有待进一步研究的问题
参考文献
致谢
作者简历及攻读学位期间发表的学术论文与研究成果

(3)基于数值模拟的毛乌素沙地植被变化对区域气候和水分平衡影响研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 选题背景与研究意义
        1.1.1 选题背景
        1.1.2 研究意义
    1.2 研究进展与现状
        1.2.1 植被变化影响气候的过程和机制
        1.2.2 植被变化影响气候的研究方法
        1.2.3 植被变化对区域气候的影响
        1.2.4 植被变化对区域水分平衡的影响
        1.2.5 目前研究中存在的问题与不足
    1.3 科学问题与研究内容
        1.3.1 拟解决科学问题
        1.3.2 研究内容与技术路线
第二章 研究区概况、WRF模式及数据介绍
    2.1 研究区概况
        2.1.1 地理位置
        2.1.2 地貌
        2.1.3 气候
        2.1.4 水文条件
        2.1.5 植被
        2.1.6 土壤
    2.2 WRF模式介绍
        2.2.1 模式简介
        2.2.2 动力学框架
        2.2.3 物理模块
    2.3 数据介绍
        2.3.1 WRF模式输入数据
        2.3.2 遥感数据
        2.3.3 气象观测数据
第三章 2001-2018 年毛乌素沙地植被的时空变化特征
    3.1 引言
    3.2 研究方法
        3.2.1 数据预处理
        3.2.2 植被NDVI变化特征分析
        3.2.3 相关性分析
        3.2.4 多元回归残差分析
    3.3 结果分析
        3.3.1 生长季NDVI的空间分布与时空变化特征
        3.3.2 生长季NDVI变化与气候要素之间的关系
        3.3.3 气候变化和人类活动对生长季NDVI变化的相对贡献
    3.4 讨论
    3.5 小结
第四章 毛乌素沙地植被变化对区域气温的影响
    4.1 引言
    4.2 研究方法
        4.2.1 WRF模式配置及物理参数化方案
        4.2.2 数值模拟试验设计
        4.2.3 WRF模式输入数据预处理
        4.2.4 模式验证
        4.2.5 植被变化对气温的影响评估
        4.2.6 极端气温指数
        4.2.7 地表能量平衡
        4.2.8 地面空气热含量
    4.3 结果分析
        4.3.1 土地利用/覆盖类型及夏季地表生物物理参数的变化
        4.3.2 气温模拟结果验证
        4.3.3 植被恢复对2-m气温的影响
        4.3.4 植被恢复对极端气温的影响
        4.3.5 植被恢复对地表能量收支的影响
        4.3.6 植被恢复对湿度和地面空气热含量的影响
    4.4 讨论
        4.4.1 WRF模式的适用性
        4.4.2 植被恢复引发的区域降温效应
        4.4.3 植被恢复对极端气温的影响
        4.4.4 植被恢复引起降温效应的物理机制
        4.4.5 植被恢复对湿度和地面空气热含量的影响
    4.5 小结
第五章 毛乌素沙地植被变化对区域降水以及水分平衡的影响
    5.1 引言
    5.2 研究方法
        5.2.1 数值模拟试验设计
        5.2.2 模式验证
    5.3 结果分析
        5.3.1 降水模拟结果验证
        5.3.2 植被恢复对日均地表能量通量的影响
        5.3.3 植被恢复对降水以及区域水分平衡的影响
        5.3.4 植被恢复对大气湿度和温度的影响
        5.3.5 植被恢复对低层环流的影响
    5.4 讨论
        5.4.1 植被恢复对降水的影响
        5.4.2 植被恢复影响降水的物理机制
        5.4.3 植被恢复对区域水分平衡的影响
    5.5 小结
第六章 毛乌素沙地陆面蒸散与水汽输送对区域降水的影响
    6.1 引言
    6.2 研究方法
        6.2.1 WRF模式配置
        6.2.2 数值模拟试验设计
        6.2.3 不同过程影响降水的贡献方式
    6.3 结果分析
        6.3.1 土壤湿度和水汽通量辐合对降水量和低层环流的影响
        6.3.2 土壤湿度和水汽通量辐合对降水频率及强度的影响
        6.3.3 土壤湿度和水汽通量辐合影响降水的贡献方式
    6.4 讨论
        6.4.1 土壤湿度和水汽通量辐合对区域降水的影响
        6.4.2 土壤湿度和水汽通量辐合影响降水的贡献方式与机制
        6.4.3 陆面特征改变对区域降水以及水分平衡的影响
    6.5 小结
第七章 结论与展望
    7.1 主要结论
    7.2 创新、不足与展望
        7.2.1 特色与创新
        7.2.2 不足与展望
参考文献
致谢
攻读博士研究生期间发表的学术论文
论文选题来源

(4)黄河流域草地生态系统服务功能及其权衡协同关系研究(论文提纲范文)

摘要
SUMMARY
第一章 绪论
    1.1 选题背景与研究意义
        1.1.1 选题背景与问题的提出
        1.1.2 研究意义
    1.2 文献综述
        1.2.1 生态系统服务及草地生态系统服务的研究进展
        1.2.2 生态系统服务权衡与协同关系的研究进展
        1.2.3 生态系统服务驱动机制的研究进展
        1.2.4 气候变化和人类活动对生态系统服务的影响的研究进展
        1.2.5 研究评述
    1.3 科学问题
    1.4 研究目标与内容
        1.4.1 研究目标
        1.4.2 研究内容
    1.5 研究思路与技术路线
第二章 研究方法与数据处理
    2.1 研究区概况
        2.1.1 土地利用/覆被特征
        2.1.2 土壤质地特征
        2.1.3 气候特征
    2.2 研究方法
        2.2.1 产水量
        2.2.2 碳储量
        2.2.3 土壤保持
        2.2.4 生境质量
        2.2.5 植被净初级生产力(NPP)
        2.2.6 空间统计分析
    2.3 数据来源与处理
        2.3.1 InVEST模型输入数据
        2.3.2 数据处理
第三章 黄河流域1990—2018 年土地利用/覆被时空演变
    3.1 黄河流域土地利用/覆被时空总体特征分析
        3.1.1 时间变化特征
        3.1.2 空间变化特征
    3.2 黄河流域土地利用/覆被类型转移图谱分析
        3.2.1 1990—2000 年土地利用转型图谱分析
        3.2.2 2000-2010 年土地利用转型图谱分析
        3.2.3 2010-2018 年土地利用转型图谱分析
    3.3 二级流域土地利用结构特征及变迁
        3.3.1 土地利用组合类型分析
        3.3.2 地类区位意义分析
    3.4 讨论与小结
        3.4.1 讨论
        3.4.2 小结
第四章 黄河流域草地生态系统服务功能及其空间异质性
    4.1 黄河流域生态系统服务功能时空演变特征分析
        4.1.1 产水深度时空动态演变特征分析
        4.1.2 碳储量时空动态演变特征分析
        4.1.3 土壤保持的时空动态演变特征分析
        4.1.4 生境质量时空动态演变特征分析
        4.1.5 NPP时空动态演变特征分析
    4.2 草地生态系统服务功能空间自相关分析
        4.2.1 草地产水量空间自相关
        4.2.2 草地碳储量空间自相关
        4.2.3 草地土壤保持空间自相关
        4.2.4 草地生境质量空间自相关
        4.2.5 草地NPP空间自相关分析
    4.3 草地生态服务功能的地形效应
        4.3.1 草地产水服务功能
        4.3.2 草地碳储量服务功能
        4.3.3 草地系统土壤保持
        4.3.4 草地系统生境质量
        4.3.5 草地生态NPP
    4.4 讨论与小结
        4.4.1 讨论
        4.4.2 小结
第五章 黄河流域生态系统服务功能对草地利用转型的敏感性
    5.1 不同土地利用/覆被类型的生态系统服务功能对比
    5.2 草地生态系服务功能对全域生态系统服务功能的影响研究
        5.2.1 流域草地面积变化与全域及草地生态系统服务功能关系的定性分析
        5.2.2 区域生态系统服务功能对草地与其他地类之间转换的敏感性分析
    5.3 讨论与小结
        5.3.1 讨论
        5.3.2 小结
第六章 黄河流域草地生态系统服务功能权衡与协同关系及其驱动因素
    6.1 研究方法
        6.1.1 权衡协同研究方法
        6.1.2 生态系统权衡协同驱动因素
    6.2 黄河流域生态服务功能不同尺度权衡协同关系
        6.2.1 全域尺度生态服务功能权衡协同关系
        6.2.2 流域生态系统服务权衡协同
    6.3 草地生态服务功能权衡协同关系
    6.4 草地生态系统服务功能权衡协同的驱动因素
        6.4.1 基于随机森林的生态系统服务空间分布影响权重
        6.4.2 基于地理加权回归模型权衡协同驱动因素分析
    6.5 讨论与小结
        6.5.1 讨论
        6.5.2 小结
第七章 黄河流域未来土地利用/覆被变化和生态系统服务多情景模拟
    7.1 黄河流域未来土地利用/覆被预测
        7.1.1 CA-Markov模型原理及预测步骤
        7.1.2 2030 年土地利用/覆被预测
    7.2 未来气候变化预测
    7.3 不同情景下生态系统服务功能
        7.3.1 黄河流域生态系统服务功能
        7.3.2 黄河流域草地生态系统服务功能变化
    7.4 讨论与小结
        7.4.1 讨论
        7.4.2 小结
第八章 黄河流域生态系统服务功能分区及草地生态系统分类管理对策
    8.1 基于SOM的黄河流域生态系统服务功能分区
        8.1.1 研究方法
        8.1.2 结果及分析
    8.2 草地生态核心功能区及提升重点区域识别
        8.2.1 识别方法与过程
        8.2.2 识别结果及分析
        8.2.3 草地生态功能优化对策
    8.3 讨论与本章小结
        8.3.1 讨论
        8.3.2 小结
第九章 研究结论与展望
    9.1 研究结论
    9.2 创新点
    9.3 不足与展望
参考文献
致谢
个人简介
导师简介

(5)元谋干热河谷小桐子(Jatropha curcas L.)人工林水分胁迫适应机制研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景及意义
        1.1.1 研究背景
        1.1.2 研究目的与意义
    1.2 干热河谷主要特征与生态安全
        1.2.1 区域气候、水系及土壤
        1.2.2 干热河谷区生态安全与生态修复
        1.2.3 干热河谷区植被恢复模式
    1.3 小桐子资源与利用研究进展
        1.3.1 生长分布及生物学特性
        1.3.2 小桐子种植效益
    1.4 林地水分循环
        1.4.1 林地水分循环
        1.4.2 植被的蒸散发
        1.4.2.1 植被蒸腾耗水的研究方法
        1.4.2.2 干、热条件下植被的蒸腾特性
        1.4.2.3 高温与胁迫下植物蒸腾特性
        1.4.3 降雨再分配与土壤水分
    1.5 拟解决的科学问题
    1.6 研究内容
    1.7 技术路线
第二章 研究区概况与方法
    2.1 研究区概括
        2.1.1 地理位置
        2.1.2 地质、地貌与土壤特征
        2.1.3 水文特征
        2.1.4 气候特征
        2.1.5 植被特征
    2.2 研究方法
        2.2.1 气候与植被变化
        2.2.1.1 气候数据来源及处理方法
        2.2.1.2 植被覆盖度
        2.2.2 生物多样性调查
        2.2.2.1 调查区地理位置
        2.2.2.2 采样点详情
        2.2.2.3 乔灌层林木调查
        2.2.2.4 林下植被群落调查
        2.2.2.5 稀疏灌草丛群落调查
        2.2.2.6 重要值与α多样性指数
        2.2.3 降雨再分配观测
        2.2.3.1 实验设计
        2.2.3.2 测定项目与方法
        2.2.4 土壤水分
        2.2.4.1 实验设计
        2.2.4.2 测定项目与方法
        2.2.5 小桐子林地蒸散发
        2.2.5.1 波文比法实测蒸散发实验设计
        2.2.5.2 波文比能量平衡法实测蒸散发
        2.2.5.3 FAO Penman-Monteith综合法估算蒸散发
        2.2.6 小桐子苗木适应干、热胁迫的生理适应机制
        2.2.6.1 试验材料
        2.2.6.2 试验设计
        2.2.6.3 测定项目与方法
    2.3 数理统计
第三章 干热对植被的胁迫作用
    3.1 气候年际变化
        3.1.1 降雨量年际变化
        3.1.2 相对湿度年际变化
        3.1.3 地面温度年际变化
        3.1.4 气温年际变化
        3.1.5 日照时数年际变化
    3.2 植被覆盖度变化
        3.2.1 元谋干热河谷1999和2019 年植被覆盖度
        3.2.2 元谋干热河谷20 年植被覆盖度变化趋势
    3.3 极端干热气候下植被覆盖度变化
        3.3.1 极端干热气候特征
        3.3.2 极端干热气候下植被覆盖度特征
        3.3.3 元谋干热河谷极端干热气候年植被覆盖度变化趋势
    3.4 小桐子植物群落组成与结构特征
        3.4.1 小桐子植物群落物种丰富度
        3.4.2 小桐子乔灌层植物群落结构特征及多样性
        3.4.3 小桐子草本层植物群落结构特征及多样性
        3.4.4 元谋干热河谷稀疏灌草丛物种丰富度
    3.5 不同海拔、坡度梯度小桐子生长及植物群落多样性特征
        3.5.1 不同海拔梯度小桐子生长及植物群落多样性特征
        3.5.2 不同坡度梯度小桐子生长及植物群落多样性特征
    3.6 讨论
    3.7 本章小结
第四章 元谋干热河谷小桐子林内小气候与林地蒸散特性
    4.1 森林小气候变化(以平地为例)
        4.1.1 林内外温、湿度小气候
        4.1.2 降雨量和太阳辐射
        4.1.3 风速和风向
    4.2 能量平衡各分量变化特征
        4.2.1 干季典型晴天和雨天能量平衡各分量变化
        4.2.2 湿季典型晴天和雨天能量平衡各分量变化
        4.2.3 能量闭合及各分量年季变化
    4.3 基于波文比能量平衡法的蒸散发
        4.3.1 干季典型晴天和雨天蒸散发
        4.3.2 湿季典型晴天和雨天蒸散发
        4.3.3 蒸散发年际变化
    4.4 基于FAO Penman-Monteith综合法的蒸散发
        4.4.1 参考作物蒸散发年际变化
        4.4.2 作物蒸散发年际变化
    4.5 元谋干热河谷小桐子人工林水分盈亏
    4.6 讨论
    4.7 本章小结
第五章 元谋干热河谷小桐子林冠降雨截留特征与土壤水分迁移
    5.1 小桐子人工林地林冠层降雨再分配特征
        5.1.1 大气降雨(RF)特征
        5.1.2 林冠降雨再分配特征
        5.1.3 不同降雨等级下林冠层降雨再分配特征
    5.2 林外降雨气候特征与林冠层降雨再分配关系
        5.2.1 降雨量与林冠层降雨再分配关系
        5.2.2 降雨历时与林冠层降雨再分配关系
        5.2.3 降雨强度与林冠层降雨再分配关系
        5.2.4 林冠层降雨再分配回归分析与校验
    5.3 干热河谷区小桐子根区土壤水分剖面特征及土壤干层
        5.3.1 平地土壤水分剖面特征及土壤干层
        5.3.2 坡地土壤水分剖面特征及土壤干层
    5.4 干热河谷区次降雨后小桐子根区土壤水迁移特征
        5.4.1 湿季次降雨前后土壤水分特征
        5.4.2 干季次降雨前后土壤水分特征
    5.5 干热河谷区小桐子林地干、湿季土壤蓄水量变化特征
    5.6 干热河谷区小桐子林地干、湿季的水量平衡
    5.7 讨论
        5.7.1 小桐子林冠降雨截留特征
        5.7.2 小桐子林地水分迁移及的水量平衡
    5.8 本章小结
第六章 元谋干热河谷小桐子适应干、热环境的生理机制
    6.1 小桐子生长、光合和水力结构对高温与干旱胁迫的响应
        6.1.1 土壤含水率
        6.1.2 小桐子生长与灌溉水利用效率
        6.1.3 小桐子光合速率
        6.1.4 小桐子导水率
        6.1.5 小桐子水势
    6.2 小桐子树干液流对高温与干旱胁迫的响应
        6.2.1 温室内空气温度、相对湿度、土壤温度和土壤含水率变化
        6.2.2 高温-湿润条件下液流通量日变化
        6.2.3 高温-半干旱条件下液流通量日变化
        6.2.4 高温-干旱条件下液流通量日变化
        6.2.5 常温-干旱复水条件下液流通量日变化
    6.3 讨论
    6.4 本章小结
第七章 总结与展望
    7.1 讨论
    7.2 主要研究结论
    7.3 研究不足与展望
参考文献
附录1 附表
附录2 攻读学位期间发表的学术论文和研究成果
致谢

(6)半干旱煤矿区受损植被引导型恢复研究(论文提纲范文)

致谢
摘要
abstract
变量注释表
1 引言
    1.1 研究背景与意义
    1.2 研究目标
    1.3 研究内容
    1.4 技术路线
2 文献综述
    2.1 矿区土地生态损伤研究进展
    2.2 矿区植被扰动研究进展
    2.3 矿区植被恢复研究进展
    2.4 本章小结
3 半干旱区采煤塌陷对典型植物个体损伤机理研究
    3.1 叶绿素荧光诱导技术诊断植被损伤的基本原理
    3.2 研究方法
    3.3 半干旱采煤塌陷区典型植物损伤诊断分析
    3.4 半干旱区采煤沉陷对典型植物个体损伤机理
    3.5 本章小结
4 半干旱区煤炭开采对植物光合生理要素时空扰动规律研究
    4.1 机载高光谱植物光合生理要素反演基本原理
    4.2 数据获取与预处理
    4.3 基于特征分析的机载高光谱植物光合生理要素反演
    4.4 煤炭开采对植物光合生理要素时空分布的影响
    4.5 本章小结
5 半干旱矿区植被覆盖度时序变化与驱动因素分析
    5.1 研究区域概况与数据来源
    5.2 研究方法
    5.3 矿区植被覆盖度变化及驱动因素分析
    5.4 本章小结
6 半干旱矿区煤炭开采对典型植物物种分布时空扰动分析
    6.1 机载高光谱植被分类原理
    6.2 矿区典型植物分类提取
    6.3 煤炭开采对矿区典型植物物种时空分布扰动分析
    6.4 矿区植被恢复重建丰度阈值与植物配置比例分析
    6.5 本章小结
7 半干旱矿区植被引导型恢复模式研究
    7.1 半干旱矿区植被引导恢复的目标
    7.2 半干旱矿区植被引导型恢复模式
    7.3 半干旱矿区植被引导恢复应用案例
    7.4 本章小结
8 结论与展望
    8.1 结论
    8.2 创新点
    8.3 不足与展望
参考文献
作者简历
学位论文数据集

(7)基于3S集成技术的半干旱草原区大型露天煤炭基地景观格局优化研究(论文提纲范文)

致谢
摘要
abstract
变量注释表
1 绪论
    1.1 研究背景
    1.2 研究意义
    1.3 国内外研究进展
    1.4 关键科学问题、研究目标与内容
    1.5 研究方法与技术路线
2 研究区概况与数据
    2.1 研究区概况
    2.2 数据来源
    2.3 数据预处理
    2.4 本章小结
3 半干旱草原区大型煤炭基地景观分类与制图分析
    3.1 半干旱草原区大型煤炭基地景观分类的原则
    3.2 半干旱草原区大型煤炭基地景观分类体系
    3.3 半干旱草原区大型露天煤炭基地景观制图结果
    3.4 锡林浩特市胜利大型露天煤炭基地景观格局演变分析
    3.5 本章小结
4 半干旱草原区大型煤炭基地景观生态健康评价
    4.1 半干旱草原区大型煤炭基地景观生态健康的内涵
    4.2 半干旱草原区大型煤炭基地景观生态健康评价模型的构建
    4.3 半干旱草原区大型煤炭基地景观生态健康的评价标准
    4.4 锡林浩特胜利大型露天煤炭基地景观生态健康评价
    4.5 煤炭露天开采对半干旱草原景观生态健康的影响
    4.6 本章小结
5 基于引导型自修复的矿区景观格局优化方法研究
    5.1 矿区景观格局优化的目标、原则与理论
    5.2 基于引导性自修复的矿区景观格局优化方法
    5.3 锡林浩特市胜利大型露天煤炭基地引导型自修复
    5.4 锡林浩特市胜利大型露天煤炭基地景观格局优化
    5.5 半干旱草原区大型露天煤炭基地景观生态修复的建议
    5.6 本章小结
6 结论与展望
    6.1 结论
    6.2 创新点
    6.3 不足与展望
参考文献
作者简历
学位论文数据集

(8)毛乌素沙地油蒿群落退化与封育恢复特征及机制研究(论文提纲范文)

摘要
ABSTRACT
1 引言
    1.1 研究背景及意义
    1.2. 草地退化概述
        1.2.1 草地退化原因
        1.2.2 草地退化发展趋势
        1.2.3 草地退化影响研究进展
    1.3 退化草地恢复与重建概述
        1.3.1 草地恢复理论基础
        1.3.2 草地主要恢复措施
        1.3.3 毛乌素沙地恢复措施选择
        1.3.4 封育影响研究进展
    1.4 国内外研究现状
        1.4.1 种群结构及数量特征研究
        1.4.2 空间分布格局研究
        1.4.3 植被群落特征研究
        1.4.4 土壤特征研究
    1.5 本文拟解决的关键问题
    1.6 研究内容
    1.7 技术路线
2 研究区概况
    2.1 研究区地理位置
    2.2 研究区自然概况
        2.2.1 气候
        2.2.2 植被
        2.2.3 土壤
        2.2.4 地形地貌
        2.2.5 水资源
3 实验设计与研究方法
    3.1 实验设计
        3.1.1 样地选择及布设
        3.1.2 样地调查
    3.2 数据分析处理
        3.2.1 重要值
        3.2.2 群落α多样性指数
        3.2.3 群落稳定性指数
        3.2.4 群落相似性
        3.2.5 空间点格局
        3.2.6 半方差函数
        3.2.7 种群生物量估测模型
        3.2.8 种群大小结构划分
4 油蒿种群数量及结构特征研究
    4.1 油蒿种群数量特征研究
        4.1.1 油蒿种群组成
        4.1.2 油蒿种群基本数量特征
    4.2 油蒿个体特征间关系
    4.3 油蒿种群冠幅及高度分布结构研究
    4.4 油蒿种群生存分析
    4.5 油蒿种群生物量研究
        4.5.1 生物量预测模型构建
        4.5.2 生物量模型检验
        4.5.3 油蒿种群生物量估算
    4.6 讨论
        4.6.1 油蒿种群数量波动分析
        4.6.2 油蒿种群结构波动分析
        4.6.3 油蒿种群生物量波动分析
    4.7 小结
5 种群空间格局研究
    5.1 油蒿种群空间格局研究
        5.1.1 空间分布特征研究
        5.1.2 空间异质性研究
        5.1.3 空间点格局特征研究
    5.2 优势伴生种群空间点格局研究
        5.2.1 基本数量特征研究
        5.2.2 空间分布特征研究
        5.2.3 空间点格局特征研究
    5.3 油蒿种群种内关联性研究
    5.4 油蒿种群与优势伴生种群种间关联性研究
    5.5 讨论
        5.5.1 种群空间格局分析
        5.5.2 种群空间关联性分析
    5.6 小结
6 油蒿群落植被特征研究
    6.1 油蒿群落物种组成变化分析
        6.1.1 群落科属组成
        6.1.2 群落生活型组成
    6.2 群落相似性分析
    6.3 群落基本数量特征分析
    6.4 群落生物量分析
    6.5 群落α多样性分析
        6.5.1 α多样性指数数量分析
        6.5.2 α多样性指数与地上生物量关系
    6.6 各群落指标相关性矩阵
    6.7 群落稳定性分析
        6.7.1 M·Godron稳定性分析
        6.7.2 M·Godron稳定性与群落特征值关系
        6.7.3 M·Godron稳定性与α多样性关系
    6.8 讨论
        6.8.1 群落物种组成变化
        6.8.2 群落特征值波动
        6.8.3 生物多样性与稳定性波动
        6.8.4 降水年际波动对群落的影响
    6.9 小结
7 油蒿群落土壤理化性质研究
    7.1 土壤物理性质统计分析
        7.1.1 土壤含水量
        7.1.2 土壤容重
        7.1.3 土壤机械组成
    7.2 土壤化学性质统计分析
        7.2.1 土壤有机质
        7.2.2 土壤全氮及速效氮
        7.2.3 土壤全磷及速效磷
        7.2.4 速效钾
        7.2.5 土壤pH
    7.3 土壤理化性质相关性分析
    7.4 土壤因子与植被关系冗余分析
    7.5 土壤肥力评价
    7.6 生物结皮分析
        7.6.1 生物结皮盖度
        7.6.2 结皮下土壤理化性质差异
    7.7 讨论
        7.7.1 土壤理化性质波动
        7.7.2 植被群落与土壤间反馈机制
        7.7.3 生物结皮对土壤影响
    7.8 小结
8 研究结论及展望
    8.1 主要结论
    8.2 创新点
    8.3 展望
参考文献
附表
个人简介
导师简介
获得成果目录
致谢

(9)半干旱区农牧交错带生态格局研究 ——以西辽河平原为例(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景及意义
    1.2 相关研究进展
        1.2.1 生态水文的研究进展
        1.2.2 草原植被群落演替研究
        1.2.3 生态格局研究
    1.3 研究内容与技术路线
        1.3.1 研究内容
        1.3.2 技术路线
    1.4 拟解决的关键问题
    1.5 创新点
第二章 半干旱区水文循环与生态安全原理分析
    2.1 半干旱区基本特点
        2.1.1 半干旱区范围
        2.1.2 西辽河平原概况
        2.1.3 水文循环特点
        2.1.4 生态格局
    2.2 生态安全条件分析
        2.2.1 水分驱动与植被演替
        2.2.2 农牧区的进退
        2.2.3 生态格局改变
    2.3 半干旱区农牧交错带生态格局稳定性分析
        2.3.1 地下水与植被生态稳定的临界条件
        2.3.2 半干旱区农牧交错带生态格局
    2.4 本章小结
第三章 西辽河平原植被调查与历史演替分析
    3.1 植被群落历史调查
        3.1.1 植被物种组成
        3.1.2 植被群落分布
        3.1.3 草原本底特征分析
    3.2 天然草原植被群落现状调查
        3.2.1 调查的意义
        3.2.2 采样点选取原则
        3.2.3 天然草原分布
        3.2.4 采样点分布
        3.2.5 数据采集
    3.3 天然草原植被调查结果分析
        3.3.1 植被物种组成
        3.3.2 植被物种多样性演替分析
        3.3.3 植被群落调查
        3.3.4 植被群落空间分布
        3.3.5 天然草原现状特征
    3.4 西辽河平原植被演替分析
    3.5 本章小结
第四章 西辽河平原典型草原植被群落生态水文演替规律分析
    4.1 地下水位变化
    4.2 天然草原面积变化
    4.3 植被物种多样性演变分析
    4.4 天然草原植被群落演替
        4.4.1 扎鲁特旗天然草原植被群落演替
        4.4.2 科左后旗天然草原植被群落演替
        4.4.3 群落多样性变化分析
    4.5 天然草原退化演替路径
    4.6 本章小结
第五章 西辽河平原农牧交错带生态格局研究
    5.1 生态格局调整的思路与原则
    5.2 草原生态“修复”的拓扑分析
        5.2.1 天然草原是草原生态修复的基因库
        5.2.2 天然草原扩张
        5.2.3 退化草地扩张
        5.2.4 草原扩张结果分析
    5.3 地下水流场模拟
        5.3.1 模型构建及数据处理
        5.3.2 模型模拟结果验证
        5.3.3 西辽河平原地下水流场分布
    5.4 西辽河平原农牧交错带合理生态格局
        5.4.1 地下水流场目标
        5.4.2 生态格局现状
        5.4.3 近期目标
        5.4.4 中期目标
        5.4.5 远期目标
    5.5 合理性分析
    5.6 本章小结
第六章 结论与讨论
    6.1 研究成果
    6.2 创新点
    6.3 讨论与展望
参考文献
附录
攻读博士学位期间发表的论文
攻读博士期间参与的科研项目
致谢

(10)鄂尔多斯高原湖泊动态及其生态系统功能研究(论文提纲范文)

摘要
ABSTRACT
第一章 前言
    1. 湖泊动态研究
        1.1 国内研究进展
        1.2 国外研究前沿
        1.3 干旱区湖泊动态研究
    2. 湖泊生态系统影响因子研究
        2.1 气候变化对湖泊生态系统的影响
        2.2 土地利用对湖泊生态系统的影响
        2.3 景观格局对湖泊生态系统的影响
    3. 生态系统功能脆弱性评价研究
    4. 选题依据
第二章 研究区自然概况与研究方法
    1 研究区自然概况
        1.1 研究区地理位置
        1.2 研究区自然概况
        1.3 研究区湖泊概况
        1.4 研究区气候特征
        1.5 研究区资源概况
    2. 研究内容与方法
        2.1 湖泊动态特征
        2.2 湖泊动态驱动因子分析
        2.3 湖泊生态系统结构和功能
        2.4 湖泊生态系统功能脆弱性熵函数分析
        2.5 气象数据
        2.6 社会经济统计数据
    3. 数据分析
        3.1 灰色关联分析
        3.2 滑动平均法分析
        3.3 Mann-Kendall检验法
        3.4 小波分析
第三章 结果与分析
    第一节 鄂尔多斯地区湖泊时空动态
        1.1 湖泊动态的生态地带性特征
        1.2 湖泊动态的行政区域特征
    第二节 气候变化与湖泊动态的关系
        2.1 气温年际动态特征
        2.2 降水量年际动态特征
        2.3 太阳辐射年际动态特征
        2.4 气候变化趋势分析
        2.5 蒸发量对湖泊的影响
        2.6 气候变化对湖泊的影响
    第三节 鄂尔多斯地区土地利用/覆盖变化研究
        3.1 土地利用/覆盖的空间格局与动态
        3.2 土地利用/覆盖对湖泊生态系统的影响
        3.3 鄂尔多斯区域景观格局分析
        3.4 社会经济活动对湖泊动态的影响
    第四节 鄂尔多斯湖泊生态系统结构和功能
        4.1 浮游植物种类组成
        4.2 浮游植物密度
        4.3 浮游植物多样性
        4.4 浮游植物多样性指数与环境因子的相关性分析
        4.5 红碱淖和浩通音查干淖浮游植物功能群季节动态
    第五节 基于信息熵函数的鄂尔多斯湖泊生态系统脆弱性研究
        5.1 信息熵量化分析指标体系
        5.2 鄂尔多斯湖泊生态系统功能脆弱性熵函数分析
第四章 讨论
    1. 鄂尔多斯高原湖泊动态驱动力
    2. 湖泊生态系统结构和功能
    3. 湖泊生态系统的熵理论分析
    4. 鄂尔多斯湖泊生态环境治理与恢复的对策和建议
第五章 结论
参考文献
附录
    表一. 红碱淖浮游植物名录表(2014年)
    表二. 浩通音查干淖浮游植物名录表
附图
致谢
攻读博士学位期间所发表的学术论文

四、Conservation and restoration of degraded ecosystems in arid and semi-arid areas of northwest China(论文参考文献)

  • [1]内蒙古赛罕乌拉草地不同利用方式下蒸散发与生态效应研究[D]. 张小华. 南京信息工程大学, 2021(01)
  • [2]黄土高原植被恢复过程中土壤碳氮水耦合机制及恢复力研究[D]. 李彬彬. 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2021(02)
  • [3]基于数值模拟的毛乌素沙地植被变化对区域气候和水分平衡影响研究[D]. 郑颖. 内蒙古大学, 2021
  • [4]黄河流域草地生态系统服务功能及其权衡协同关系研究[D]. 杨洁. 甘肃农业大学, 2021(01)
  • [5]元谋干热河谷小桐子(Jatropha curcas L.)人工林水分胁迫适应机制研究[D]. 李婕. 云南师范大学, 2021(09)
  • [6]半干旱煤矿区受损植被引导型恢复研究[D]. 刘英. 中国矿业大学, 2020
  • [7]基于3S集成技术的半干旱草原区大型露天煤炭基地景观格局优化研究[D]. 吴振华. 中国矿业大学, 2020
  • [8]毛乌素沙地油蒿群落退化与封育恢复特征及机制研究[D]. 刘建康. 北京林业大学, 2019(04)
  • [9]半干旱区农牧交错带生态格局研究 ——以西辽河平原为例[D]. 闫龙. 中国水利水电科学研究院, 2018(12)
  • [10]鄂尔多斯高原湖泊动态及其生态系统功能研究[D]. 陈晓江. 内蒙古大学, 2016(08)

标签:;  ;  ;  ;  ;  

西北干旱半干旱地区退化生态系统的保护与恢复
下载Doc文档

猜你喜欢