水电站监测系统联合开发及若干技术问题探讨

水电站监测系统联合开发及若干技术问题探讨

一、水电站监控系统联合开发及若干技术问题探讨(论文文献综述)

赵建达,吴昊[1](2021)在《中国小水电大事记(1904—2019年)(之五)》文中研究指明2010年1月,《中共中央国务院关于加大统筹城乡发展力度,进一步夯实农业农村发展基础的若干意见》(中发[2010]1号)要求推进水电新农村电气化县建设。1月8日,水利部《关于切实加强四川省农村水电工作的意见》(水电[2010]7号)要求四川省水利厅认真总结农村水电工作经验,进一步健全机构,完善职能,提出强化管理的对策措施,尽快报水利部。四川是农村水电大省,在水电农村电气化建设的带动下,全省农村水能资源开发取得较大成绩,农村水电装

赵建达,吴昊[2](2021)在《中国小水电大事记(1904—2019年)(之四)》文中研究说明2000年2月12日,水利部以水电[2000] 46号文印发《关于进行水电农村电气化县选点工作的通知》,对在新时期开展水电农村电气化县选点工作作出安排部署。2月16日,浙江省水利厅印发《关于加强小水电安全生产工作若干意见》的通知(浙水电[2000]2号)。要求进一步加强小水电行业管理,规范电站安全生产,杜绝生产环节中出现的各种隐患。

郭竞之[3](2021)在《某水电站计算机监控系统的设计与实现》文中研究表明伴随着中国社会经济的迅速发展进步,社会对电力能源供应的需求不断增加,我国发电厂总装机规模也不断增加。随着电网规模的逐渐增大,网络安全问题日益凸显,很有必要提升电网稳定性、安全性、电能质量而满足其未来发展要求,这就需要开发出高性能的发电企业监控系统。某水电站是四川东北部高压传输电网的主力电站,担负着高压传输电网调节波峰、调节频率与意外突发事故配备等重要工作任务。2001年5月投入正式运行的南瑞SSJ 3060型计算机监控系统为安全、连续、稳定发供电打下了坚实的设备基础,提高了电站的综合自动化水平。本文研究了此水电站监控系统的性能缺陷和难扩展相关问题,依据电力标准要求而对其进行重新设计。首先叙述了当前水电站监控系统的发展进步实际情况,根据水电站监控系统的真实状况以及特征,在对水电站计算机监控系统需求研究的基础之上,指出了满足实际要求的设计方案。通过对计算机监控系统网络组成结构、上位机、现地控制单元、安全防护、AGC/AVC(Automatic Generation Control/Automatic Voltage Control)等进行研究,结合现场的设备结构及实际生产情况,找到符合要求且安全可行的设计方案。在对系统整体结构进行设计的基础上,对硬件、软件进行了选型配置,同时对开停机流程、AVC/AGC等功能进行了研究设计,提高了生产运行自动化、信息化水平。当代水电站计算机监控系统,是集自动智能化专业技术、电子信息化专业技术、网络专业技术、多数字媒体专业技术等多专业学科的结果。计算机监控系统通过对水电站运行设备的展开参数采集、实时监视、调节控制、操作,在节约人力成本,减轻工作人员工作压力的同时,也极大提高了生产效率与安全可靠性。

马春辉[4](2020)在《基于离散元的堆石料宏细观参数智能反分析及其工程应用研究》文中认为作为重要的工程建筑材料,堆石料是具有高压实性、强透水性、高抗剪强度等工程特性的散粒堆积体材料,已被广泛应用于坝工、堤防、道路、机场、港口以及海洋等工程中。与此同时,随着我国乃至世界范围内水资源开发水平的进一步提升,水利工程建设面临着“四高一深”(高寒、高海拔、高陡边坡、高地震烈度、深厚覆盖层)的全新挑战。作为水利工程中堆石坝、堆石边坡等堆石工程的主要建筑材料,迫切需要更进一步掌握堆石料物理力学特性及其堆石工程安全性态。因此,本文建立了堆石料多个尺度变量间的强非线性关系,通过改进、串联和优化机器学习等智能算法,使反分析计算确定的堆石料力学参数更符合工程实际,并将其应用于堆石料细观变形机理研究与堆石工程实际问题解决中。本文主要研究内容和成果如下:(1)构建了基于结构监测数据的堆石料宏观本构模型参数自适应反分析模型,应用和声搜索与多输出混合核相关向量机等算法,快速、精确地实现了对不同工程、不同监测项目的自适应反分析,进一步提高了材料参数反分析的计算精度与适用性。此外,提出了基于相关向量机与随机有限元的不确定性反分析模型,以量化堆石坝在设计、施工、建设中存在诸多不确定性因素,模型综合考虑了结构数值仿真计算以及算法模型输入-输出间的不确定性,能够对堆石料参数的变异系数进行不确定性反分析计算,使反分析后的随机有限元正算值与沉降值的平均绝对误差为1.930。(2)建立了精细化的堆石料离散元三轴试验模型,以准确反映堆石料的材料特性,并深入分析了离散元细观参数对堆石料变形特性的影响规律和机理。通过总结堆石料细观接触模拟研究进展,构建了基于应力应变曲线的堆石料细观参数标定模型,应用量子遗传算法和支持向量机解决以往堆石料细观参数标定中影响因素多、耗时严重的问题。此外,提出了基于宏观本构模型参数的堆石料细观参数标定模型,使标定后的多围压应力应变曲线误差均小于0.21MPa,进一步拓展了细观参数标定模型的适用性,据此定性、定量地分析了三轴试验中堆石料的细观变形演化过程。(3)提出了基于结构监测数据的堆石料细观参数标定模型,根据堆石坝运行期的实测变形值对堆石料细观接触模型参数进行标定,促使堆石料细观参数值更符合工程实际运行情况。随后,为进一步发挥离散元数值仿真方法在堆石工程结构模拟中的明显理论优势,尝试采用离散元对堆石坝进行数值仿真,并对比分析了堆石坝离散元与有限元仿真的变形、应力计算结果。最后,开发了堆石料宏细观参数反分析平台,将上述多个参数反分析模型集成于平台中,实现堆石料不同尺度参数间的快速、准确转换。(4)在应用上述堆石料参数反分析方法的基础上,建立了工程尺度的堆石边坡离散元模型,以模拟施工、运行、滚石、地震和防护措施等工况下的堆石边坡失稳演变过程,从而解决了堆石边坡的挡墙高度确定问题。其中,为解决地震波在人工边界处发生反射、叠加等问题,建立了离散元的粘性边界,并对比了不同边界下离散元模型的响应情况,后将其应用于堆石边坡地震工况分析中。通过多个工况的分析明确了堆石边坡的失稳过程及影响范围,并建议该堆石边坡的混凝土挡墙加高到11m,为类似堆石工程的防护措施设计方法提供了参考。

何鹏辉[5](2020)在《水电站群数据采集系统研究开发》文中认为随着智能电网建设的快速推进与信息技术的飞速发展,正加速推动着水电站自动化、信息化、智能化水平的快速提升。所提数据采集系统是水电站群集控中心监控系统(以下简称:水电站远程集控系统)的重要组成部分与数据门户,其主要承担着整个集控系统的数据采集任务,包括与厂站端/上下级集控中心/调度中心的远程通信、信息交换、规约处理、与其他系统的数据通信以及数据转发等。现有数据采集系统大多采用紧耦合的方式进行构建,各项应用功能模块被打包在一个工程里,未能实现功能层面的有效分离与解耦合,难以进行分布式开发与部署,且系统运行维护与升级困难。在实际工业运行过程中,这种紧耦合结构的数据采集系统在数据吞吐能力、实时性、可靠性以及可扩展性等方面存在的性能瓶颈已日益凸显,已难以满足当前“无人值班、少人值守”的智能水电站建设的需求。因此,结合先进信息技术,研究开发一套满足智能水电站集控业务发展需求的水电站群数据采集系统已十分必要。本文对水电站群数据采集系统进行了总体设计,涉及系统硬件与软件架构设计以及历史数据库设计,针对现有数据采集系统各功能模块紧密耦合的问题,借助面向服务架构思想(SOA)将系统进行解耦合,将原本集中式结构的系统转换为松耦合的分布式系统。与此同时,提出了基于异步事件驱动机制的IEC60870-5-104规约处理方法,以提高系统数据采集的稳定性。此外,针对传统客户机/服务器(C/S)模式的系统安装部署复杂,兼容性与可维护性差的问题,提出了基于浏览器/服务器(B/S)模式构建系统人机交互子系统的实现方案,使得用户无需下载安装复杂的客户端软件,只需通过浏览器即可对系统进行跨平台Web访问,具备较强的灵活性。另外,将系统部署至云平台上,可充分利用云技术具备的技术优势,提高了系统的可靠性与可扩展性。本文结合广西某流域小水电站群集控中心建设项目实际应用需求,采用微软.NET框架,设计并实现了一套水电站群数据采集系统,通过接入实际工程数据,将系统投入在线运行,运行效果表明,该系统可有效突破现有数据采集系统存在的瓶颈,适应了未来智能水电站集控业务的发展需求。

吴昊[6](2020)在《基于双层并行算法的水电站群优化调度方法及应用研究》文中研究说明随着我国大型江河流域的水电站群规模急剧扩大,优化调度问题也随之越来越复杂。为充分发挥各水电站间最优水量补偿和优化调节的功效,从而达到水资源最大利用率,世界各地相关专业领域的科学家和学者们,都纷纷依据目前各类水电站的种类及特性,展开了优化调度模型相关理论和求解方法研究,然而调度模型的优化解精度和对应算法的计算耗时是两大主要相互制约矛盾点。近些年来随着计算技术的飞速发展,以此为契机可充分有效利用计算资源,根据模型和算法的不同特点提出相对应的并行算法,在保证或提高优化解精度的基础上,一定程度上可相对减少或保持原有模型优化求解的计算耗时。因此本文以我国西南地区某大型流域为研究背景,取其部分相邻串联水电站,且都具备年调节功能。根据梯级水电站群库容水流优化调节的理论方法及其模型特点,以能够获得理想优化结果作为目的,在单机多核、联网多机两种架构模式下提出了双层并行算法,针对如何提高计算效率展开研究,从而可进一步提高对梯级水电站群优化调度的管理水平。本文主要研究成果如下。(1)在水电站发电优化调度模型中应用人工鱼群算法,为避免陷入局部优化解,可将其结合混沌优化算法,扩大单体人工鱼的遍历搜索范围,另一方面可增加单体人工鱼数目,从而进一步提高优化调度模型优化解的精度,然而计算耗时会有一定程度的增加。针对该问题并结合模型特点,对其可并行化因素进行深入的分析研究,以多台多核计算机互联组成网络系统为硬件基础,提出了混沌人工鱼群双层并行算法,之后对我国西南某流域的单一水电站发电优化调度模型展开了实例验证。结果表明该双层并行算法不仅提高了整体优化解的精度,同时能有效将计算耗时控制在可接受的范围之内。(2)将传统动态规划算法应用于水电站优化调度模型中,增加时段内初、末库容状态变量离散数,可进一步使整体优化解收敛于理论最优值,但计算耗时会成倍增加。针对该问题,基于时段内初、末状态库容变量各循环计算的可并行性,提出了双层并行动态规划算法。通过我国西南某流域水电站发电优化调度模型的实例验证,表明该算法在整体优化解精度和计算耗时两个矛盾点有较好的制衡作用。(3)当应用动态规划算法求解梯级水电站群与库容水流优化调节相关的水力发电模型时,若提高优化解精度,易产生“维数灾”现象,对其计算进行并行化处理可在一定程度上减少计算时间,但并未有效降维,计算时间依然较多。基于大系统分解协调原理建立的二级递阶结构调度模型可有效降维,且可应用多线程技术并行化的标准动态规划算法求分解后水电站子系统的优化解。针对标准动态规划算法中可并行化因素展开分析研究,引出了基于大系统分解协调及分解后单一水电站双层并行动态规划的梯级水电站群发电优化调度模型。其并行因素主要采自于分解后各水电站时段内初、末离散化库容状态变量的两种细粒度子任务划分,通过扩大离散程度来提高优化结果精度。以我国西南某流域的梯级水电站群作为实例背景,验证了该方法的有效性。(4)基于大系统分解协调方法,根据多台多核计算机互联的体系架构,提出了梯级水电站群优化调度模型的异时启动双层并行计算。该方法的基本思路是首先将多台多核计算机分配给对应编号的水电站,通过异时启动并行算法实现各水电站之间的相互独立计算,即为粗粒度任务划分的第一层并行计算;第二层并行计算便是基于分解后水电站自身标准动态优化计算的并行化处理,也是时段内离散化的初或末库容状态变量细粒度子任务划分。以我国西南某流域的梯级水电站群作为实例背景验证了该方法能够有效控制计算耗时和整体优化解精度。

许贝贝[7](2020)在《水力发电机组系统可靠性与多能互补综合性能研究》文中研究指明在国家进行电力结构化、市场化改革大背景下,风水等随机可再生能源将会更多地被电力系统所消纳。水电作为调峰调频重要角色,将会面临更为频繁的过渡工况调节和非最优工况运行两个重要发展趋势。准确认识在非最优工况运行下水轮发电机组动态变化特征,对提高水轮发电机组系统的灵活性运行和维护区域电力系统的安全可靠性具有重要的科学意义价值。机组在非最优工况区轴系振动剧烈,以传统水轮机调节系统为核心的PID调速器控制效果无法保证发电机角速度的稳定性,这严重威胁了水轮发电机组在非最优工况区的发电可靠性。论文以水轮机调节系统发电机角速度控制与轴系振动相互作用关系为关键科学问题并对传统水轮机调节系统模型进行改进以研究水轮发电机组发电可靠性和综合性能评估问题,并取得以下三方面研究成果:1.基于最优工况设计的传统水轮机调节系统因轴系振动微小而忽略其对调速器控制的影响,这已不适应能源结构改革背景下电力系统对水轮发电机组全工况运行的新要求,故提出基于传统水轮机调节系统评估非最优工况下水轮发电机组发电可靠性建模新思路——传统调节系统与水轮发电机组轴系统模型的耦合统一围绕水轮机调节系统控制与水力发电机组轴系振动相互作用关系问题,系统论述和分析调节系统与机组轴系耦合关系和参数传递方式。通过对三种耦合方法的深入研究,进一步提高了水轮机调节系统在部分负荷或过负荷工况下的模拟精度。主要包括:(1)以水轮机调节系统中发电机角速度与水轮发电机组转子形心偏移一阶导数为耦合界面参数,实现了调速器控制与轴系振动相互作用的模型统一;选择经典调节系统模型和基于纳子峡水电站现场测量轴系偏移峰峰值数据作对比探究统一模型模拟精度。结果表明:机组轴系形心偏移不受流量变化的影响,即工况变化形心偏移值保持不变,且轴系固有频率基本保持不变。可见,通过发电机角速度耦合的水轮发电机组系统在不同工况下相互作用关系极不明显,且在轴心偏移上模拟精度较差。(2)以水力不平衡力和水轮机动力矩为耦合界面参数,并选择经典调节系统模型与耦合统一模型仿真结果对比探究模型模拟精度。结果表明:水轮机调节系统动态响应模拟误差在稳定值无差别,在过渡过程下模拟误差超过10%。可见,基于水力不平衡力和水轮机动力矩耦合的系统模型能够较好反映机组在过渡过程下调节系统与轴系振动相互作用关系,但在过渡过程中模拟误差较大。(3)以水力激励力、水力不平衡力和水轮机动力矩为耦合界面参数,并对轴系不对中故障振动实验测量的轴心轨迹和振动频率与所建耦合统一模型仿真结果进行对比分析,发现机组固有频率模拟误差小于3%。可见,通过水力激励力、水力不平衡力和水轮机动力矩耦合的系统模型在模拟不对中故障时表现出较好的模拟精度。2.围绕非最优工况下水轮机调节系统耦合关系复杂且参数取值存在不确定性导致的发电可靠性评价困难问题,提出利用敏感性和可靠性分析工具量化不同工况下机组发电可靠性的新构想——水轮发电机组系统发电可靠性指标及其初步应用(1)稳定工况和过渡工况下模型参数不确定性分析从水电站参数设计角度对机组模型参数进行随机不确定性定义,并选择发电机角速度和发电机形心偏移作为调节系统和轴系系统模型输出值,从而得到机组在稳定运行工况和过渡工况下模型单参数敏感性排序和参数间相互作用的敏感性排序,进而确立水力发电系统发电可靠性的场景设计原则。(2)不同场景下水轮发电机组发电可靠性指标选取与评估通过设计不同可再生能源占比、不同风速干扰等场景,选择最小调节值、最大调节值、超调、欠调和峰值五个动态指标作为发电可靠性评估指标,研究风水互补发电系统的故障响应、调节性能等动态特征。研究结果表明,水力发电系统调节能力对随机风低标准差和梯度风高平均值低标准差极为敏感。相反,对阵风属性指标(即风速频率、幅值和偏移量)的调节敏感性较弱。此外,快速响应(以调节时间和峰值时间表示)与稳定响应(以最小调节值、最大调节值、超调、欠调和峰值表示)之间的主导因素评价比较复杂。但当快速响应与稳定响应相一致时,就很容易对水轮发电机组动态调节性能做出评价。3.为克服传统风水互补系统以天为最小时间尺度而忽略水轮发电机组动态性能状态的经济型问题,提出一种基于秒级尺度动力学模型的经济性评估方案——资源利用度、平抑性等级和综合效益分析通过研究风电资源的时间与空间尺度效应,给出简单时空尺度等效方案,进而提出基于秒级尺度的风水互补发电系统模型风速变异系数、波动系数和平抑系数的计算方法;进一步通过设计不同可再生能源占比、不同风速干扰等场景,获取风水互补系统的动态响应,并计算年运行内的售电效益、调峰效益、节省能源效益、机组启停成本、导叶疲劳损失成本、维护成本(无导叶损失)等,全方位衡量水电站在调节风电功率变化场景下所带来的经济收益情况。初步试算结果表明,基于秒级尺度的风水互补系统的经济性评估方案是可行的。

候赛[8](2020)在《A公司水电企业集控运营管理研究》文中研究表明与其他电力能源相比,水力水电能源有一定的清洁环保、电价和成本较低、上网优先等优势,因此,水电一直是当前最成熟、最重要的可再生清洁能源。但不同于火电等其他能源,由于受水力资源位置的限制,一直以来水电站为更好的获取水力资源,绝大多数都选在远离市区的峡谷深山里,正是由于这种特殊性,无论是从交通出行、员工生活等等方便都有很大的局限性。为了能够改变这种限制,对水电站实行集控运行渐渐成为一种发展趋势。随着电力科技发展,国内外众多流域水电开发公司在水电站“集控运行、关门管理”等运营模式建设层面开展了研究,获得了良好实效。同时,在水电站集中控制运行稳定后,往往会给水电企业的运营管理带来新问题与挑战,在此情形下,探索改进企业的运营管理模式势在必行,概括来说集中控制时运营管理中的问题总体包括生产管理、运行与维护、检修与安全、保障和应急管理体系建立等,是否能够更好的构建上述体系,对于水电站的安全、经济、可靠运行有着重要意义,同时也是水电站效益提升的重要手段。基于对A公司水电企业现状、发展需求的分析,结合企业运营管理理论,概述了水电企业运营管理的内容,并针对水电站运营管理的研究历程、管理难点及特点,分析A公司目前存在的问题,提出对水电企业集控运营管理的优化思路与管理定位,实现“集中监控、分级管理、两地协同”。之后,针对A公司在集中控制管理时可能出现的问题,结合企业自身实际提出了一些保障措施。在本文的最后,也得出了一些水电企业的集控运营管理模式的结论,同时对集控运营管理模式进行了展望。

杨浩[9](2020)在《水电站水轮机组远程监控系统研究与开发》文中认为近些年来,随着科学与技术的不断发展,国家在每个行业领域倡导绿色环保、智能化、大数据等现代化技术。由于清洁、可再生、基本无污染等优点,水电在电力供应中所占的比例越来越高。但在我国目前水电生产过程中仍然存在诸多问题,如水电站偏远、工作条件艰苦、电站底层工作知识匮乏、电站管理系统多样、电站之间存在局限性局域性等。以东方电气集团东方电机有限公司横向课题项目为背景,以在运行的东方电气集团水电站水轮机设备作为研究对象,针对东方电气集团东方电机有限公司业务发展的特点以及适应当下信息化的要求,通过将目前先进的计算机技术、云服务技术、传感器技术和人工智能技术等结合,开发出一套水电站水轮机组远程监控运维系统,将制造和运营连接,数据共享,通过运营中的问题,不断改善和提升水轮机设备的性能,实现大数据的水电站运营模式,对水电站现场设备的远程监测、远程控制以及故障诊断预测等功能,所做具体工作如下:开发以云服务器为中心的水电站水轮机远程监控系统的数据通讯方式,包括开发采用C/S模式通过Modbus TCP协议实现PLC和本地服务器之间的通讯界面、以VPN方式完成PLC和云服务器之间的数据通讯,同时采用ADO.NET技术将数据保存至云服务器,开发Web Service服务的B/S模式的移动用户与云服务器之间的数据通讯。开发水电站水轮机远程监控系统的上位软件,包括云服务器的配置选择、数据库的对比选择、系统软件的开发。其中系统软件的开发包括数据管理、用户管理、系统管理、远程控制界面,基于C/S的生成.exe文件,基于B/S的Web系统在云服务器发布,最后完成整个混合模式的软件。验证嵌入Elman神经网络的智能专家系统和系统云服务器性能,包括对某一型号的水轮机采集变转速、变励磁、变负荷下的振动数据进行分析,对云服务器增加其用户量测试其是否能正常运行。

杨兴[10](2020)在《青海电网绿色低碳发展规划优化模型及管理研究》文中认为环境保护和绿色发展已经成为人类共同关注的课题,我国电力消费以煤电为主,长期以来电力工业一直是二氧化碳、粉尘、氮氧化物最主要的排放源之一。在绿色发展背景下,以煤电为主导的传统电力发展面临着绿色、低碳的巨大压力,迫切需要开展结构调整和管理优化。党的十九大报告指出,加快“推进能源生产和消费革命,构建清洁低碳、安全高效的能源体系”,为我国能源发展指明了方向,能源转型已上升到国家战略层面。新能源具有清洁安全、灵活经济的特点,其快速发展将电力工业带入绿色发展的新时代。发展绿色电力的关键在于新能源开发生产和电网输送效率两方面,开展电网绿色规划优化研究对促进新能源快速发展具有重要意义。尽管新能源对促进电力绿色发展具有十分显着的成效,但由于其间歇性、波动性的特征,使得常规电网在规划建设、调度方式、运维检修等方面往往变得更加复杂。因此,电力绿色发展一方面需要电网在规划阶段将新能源发展作为一个重要因素考虑,实现电网规划与电源规划的有效衔接节;另一方面需要不断加强新能源和常规电源之间的互补集成研究,提升新能源发电消纳空间,最大化的实现电力绿色发展效益。基于上述考虑,本文围绕电力绿色发展这一主题,重点展开电网与电源协同规划、多能互补集成优化、电网规划项目综合效益评估等方面内容的研究,主要研究成果和创新如下:(1)建立了青海电网用电量综合最优组合预测模型。本文立足青海生态环保、绿色发展的战略背景,开展了能源消费结构及用电量预测模型研究。首先,基于Markov模型开展能源消费结构预测,结果表明青海能源消费结构在未来几年内将发生较大变化,具有明显的电能替代趋势;其次,建立了青海电网用电量综合最优组合预测模型,基于此模型对青海电网的用电量发展进行了预测,并进行预测精度比较分析,结果表明该模型具有较高的预测精度,能够有效地开展电力负荷预测工作。通过该模型对青海电网用电量发展进行预测,为电网发展规划提供依据。(2)建立了青海电网绿色发展背景下电网与电源协同规划优化模型。本文将新能源开发情况引入电网发展规划,构建了电网与电源双层多目标协同规划优化模型,以综合最小成本为目标函数,采用基于混沌理论改进的猫群算法(C-CSO)进行优化求解,得到了优化的电网协同规划方案,所建模型可用于各区域电网发展规划。通过分析,开展考虑新能源的电网协同规划,一方面能够有效促进新能源发电消纳,在源头上减少化石能源的利用;另一方面还可促进电网不断优化完善网架结构,推动电网布局更加合理,提升资源配置能力,为新能源并网发电提供良好的接入环境,促进电网企业与电源企业实现效益提升,促进电力系统有序、健康、绿色发展。(3)建立了青海电网绿色发展网源协同规划下的多能互补集成优化模型。本文结合青海新能源开发及电网发展规划,确定了包含电力负荷、电力电量、发电特性、可靠性、购电量等因素的多能互补指标,分析了风电、光伏的发电特性以及互补特性,构建了基于风光水火多能互补的集成优化模型,以综合最小成本为目标函数,采用分支定界算法(B&B)进行分析,结果表明多能互补集成优化能够平衡新能源在时间、空间尺度上的不均衡性,能够促进新能源消纳空间进一步提升,减小新能源弃电量,减少化石能源消耗。开展多能互补集成优化研究,可以引导电力规划人员不断发现问题,找到电网与电源协同规划提升的空间,持续改进电力发展规划内容,促进电网结构不断完善和新能源开发布局不断优化。(4)建立了青海电网绿色发展电网协同规划项目综合效益评估模型。本文构建了电网协同规划项目综合效益评估指标体系,包括环境效益、国民经济效益、企业经济效益、社会效益4个方面13个指标,基于层次分析法和熵权法组合赋权的方式计算各个指标的权重,采用理想解法(TOPSIS)找出正负理想解,通过计算各个电网规划项目与正负理想解的距离得出评估结果。经多方案评估计算比较,本文得出的最优电网协同规划方案,在综合效益评估中评为最优,这证实了本文开展的电网与电源协同规划研究成果能够有助于促进电力绿色发展。(5)提出了青海电网绿色发展管理对策及建议。本文探讨了电网绿色发展优化管理对策,主要包括强化电网与电源协同规划以实现电网建设布局合理、架构完善,加快能源互联网及智能电网建设以发挥电网资源配置优势,加强可再生能源电力配额制实施以促进新能源消纳,常态开展新能源并网后电网风险评估以及时促进电网结构优化等;同时结合实际给出青海电网绿色发展的相关工作建议,主要包括加强保障新能源并网安全研究,加强新能源电源发电预测研究,深化新能源优先接入技术研究,加快建立市场化新能源消纳保障机制等,促进新能源开发利用,促进电力绿色发展。

二、水电站监控系统联合开发及若干技术问题探讨(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、水电站监控系统联合开发及若干技术问题探讨(论文提纲范文)

(1)中国小水电大事记(1904—2019年)(之五)(论文提纲范文)

2010年
2011年
2012年
2013年
2014年
2015年
2016年
2017年
2018年
2019年

(2)中国小水电大事记(1904—2019年)(之四)(论文提纲范文)

2000年
2001年
2002年
2003年
2004年
2005年
2006年
2007年
2008年
2009年

(3)某水电站计算机监控系统的设计与实现(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 课题研究背景
    1.2 课题研究目的和意义
    1.3 国内外水电站计算机监控系统研究现状
        1.3.1 国内研究现状
        1.3.2 国外研究现状
    1.4 水电站计算机监控系统的发展趋势
    1.5 本文主要研究内容
第二章 计算机监控系统的功能与需求分析
    2.1 基本需求
        2.1.1 现地控制级
        2.1.2 电厂控制级
    2.2 功能需求
        2.2.1 系统软件需求
        2.2.2 开发软件需求
        2.2.3 应用软件需求
    2.3 性能需求
    2.4 本章小结
第三章 计算机监控系统总体设计
    3.1 监控对象
    3.2 设计原则
    3.3 结构设计
    3.4 设计难点及解决方案
        3.4.1 数据采集软件的问题
        3.4.2 主控平台与被控设备通讯软件配置参数及数据库修改问题
    3.5 本章小结
第四章 计算机监控系统的硬件设计方案
    4.1 上位机的硬件设计
        4.1.1 上位机的硬件需求
        4.1.2 上位机的硬件设计
    4.2 现地控制单元(LCU)的硬件设计
        4.2.1 现地控制单元(LCU)概述
        4.2.2 现地控制单元(LCU)功能需求分析
        4.2.3 机组LCU控制单元硬件设计与配置
        4.2.4 公用LCU控制单元硬件设计与配置
        4.2.5 开关站LCU控制单元硬件设计与配置
        4.2.6 闸门LCU控制单元硬件设计与配置
    4.3 安全防护硬件设计
        4.3.1 主要安全风险分析
        4.3.2 安全防护硬件设计的总体原则
        4.3.3 分区防护
        4.3.4 硬件设计
    4.4 不间断电源系统(UPS)的硬件设计
    4.5 本章小结
第五章 计算机监控系统的软件设计
    5.1 计算机监控系统的界面设计
        5.1.1 设计原则
        5.1.2 监控系统、触摸屏界面设计
    5.2 系统平台
    5.3 软件设计
        5.3.1 监控系统的软件结构
        5.3.2 监控软件功能模块
        5.3.3 软件设计思想
        5.3.4 监控系统应用软件
    5.4 机组自动控制流程的软件设计
        5.4.1 开机过程控制流程框图
        5.4.2 开机过程控制PLC程序设计
        5.4.3 正常停机过程控制流程框图
        5.4.4 正常停机过程PLC程序设计
        5.4.5 事故停机过程控制流程框图
        5.4.6 事故停机过程PLC程序设计
    5.5 机组自动发电控制(AGC)、自动电压控制(AVC)设计
        5.5.1 自动发电控制(AGC)的设计
        5.5.2 自动电压控制(AVC)的设计
    5.6 本章小结
第六章 系统测试与评估分析
    6.1 测试目的和计划
        6.1.1 测试目的
        6.1.2 测试计划
    6.2 系统的试运行
        6.2.1 运行监视和事件报警
        6.2.2 顺控流程控制
        6.2.3 机组自动发电控制(AGC)
        6.2.4 机组自动电压控制(AVC)
    6.3 系统的测试用例
    6.4 服务器性能测试
        6.4.1 用户的并发数据测试
        6.4.2 服务器流量需求测试
        6.4.3 实时性的测试
    6.5 系统测试结果分析
    6.6 系统优缺点分析及解决思路
        6.6.1 系统整体优缺点及解决思路
        6.6.2 LCU硬件回路及软件程序优缺点及解决思路
        6.6.3 上位机软件程序优缺点及解决思路
        6.6.4 设备布置优缺点及解决思路
    6.7 本章小结
第七章 总结与展望
    7.1 总结
    7.2 展望
致谢
参考文献

(4)基于离散元的堆石料宏细观参数智能反分析及其工程应用研究(论文提纲范文)

摘要
abstract
1 绪论
    1.1 研究背景及意义
    1.2 国内外研究现状
        1.2.1 工程中反分析问题及其适定性研究进展
        1.2.2 堆石料宏观本构模型参数反分析研究进展
        1.2.3 堆石料细观接触模型参数标定研究进展
        1.2.4 工程尺度的离散元方法应用研究进展
        1.2.5 人工智能算法研究进展
    1.3 研究问题的提出
    1.4 研究内容和技术路线
    1.5 主要创新点
2 基于结构监测数据的堆石料宏观本构模型参数反分析
    2.1 堆石料材料特性
    2.2 堆石料材料的多尺度描述
    2.3 堆石料宏观本构模型参数自适应反分析
        2.3.1 堆石料本构模型
        2.3.2 HS-MMRVM算法基本原理
        2.3.3 堆石料宏观参数自适应反分析模型构建
        2.3.4 堆石料宏观参数自适应反分析模型应用实例
    2.4 堆石料宏观本构模型参数不确定性反分析
        2.4.1 蒙特卡洛随机有限元基本原理
        2.4.2 基于RVM和随机有限元的不确定性反分析模型构建
        2.4.3 不确定性反分析模型应用实例
    2.5 本章小结
3 基于室内三轴试验数据的堆石料细观接触模型参数标定
    3.1 堆石料离散元模拟
        3.1.1 离散元模拟的关键技术
        3.1.2 堆石料细观接触模型
        3.1.3 堆石料离散元三轴试样生成
    3.2 堆石料细观参数对其变形特性影响分析
        3.2.1 堆石料变形特性影响因素分析
        3.2.2 堆石料细观参数的影响机理分析
        3.2.3 堆石料变形特性曲线关联分析
    3.3 单围压下基于应力应变曲线的堆石料细观接触模型参数标定
        3.3.1 QGA-SVM算法基本原理
        3.3.2 基于应力应变曲线的细观参数标定模型构建
        3.3.3 基于应力应变曲线的细观参数标定模型应用实例
    3.4 多围压下基于宏观本构模型参数的堆石料细观接触模型参数标定
        3.4.1 基于宏观参数的细观参数标定模型构建
        3.4.2 基于宏观参数的细观参数标定模型应用实例
    3.5 堆石料三轴试验细观机理分析
        3.5.1 堆石料破裂特性分析
        3.5.2 堆石料细观组构特性的定性与定量分析
    3.6 本章小结
4 基于结构监测数据的堆石料细观接触模型参数标定
    4.1 基于结构监测数据的细观参数标定模型
        4.1.1 基于结构监测数据的标定模型可行性
        4.1.2 基于结构监测数据的标定模型目标函数
        4.1.3 基于结构监测数据的标定模型构造
    4.2 基于结构监测数据的细观参数标定模型应用实例
        4.2.1 堆石料宏细观数值模型构建
        4.2.2 堆石料细观参数标定结果分析
    4.3 基于细观参数标定的堆石坝离散元数值仿真研究初探
        4.3.1 堆石坝离散元模拟的关键问题及其解决方案
        4.3.2 堆石坝离散元与有限元模拟结果分析
    4.4 堆石料宏细观参数反分析软件开发
        4.4.1 反分析软件结构设计
        4.4.2 反分析软件功能设计
    4.5 本章小结
5 基于细观参数标定结果的堆石边坡失稳演变过程离散元分析
    5.1 堆石边坡工程案例背景
    5.2 堆石边坡细观接触模型及其参数标定
    5.3 堆石边坡施工工况分析
        5.3.1 施工工况离散元模型构建
        5.3.2 施工工况失稳演变过程分析
    5.4 堆石边坡运行工况分析
        5.4.1 运行工况离散元模型构建
        5.4.2 运行工况失稳演变过程分析
    5.5 堆石边坡滚石工况分析
        5.5.1 滚石工况离散元模型构建
        5.5.2 滚石工况运动分析
    5.6 堆石边坡地震工况分析
        5.6.1 离散元粘性边界基本原理及其构建
        5.6.2 不同边界条件下的离散元模型动力响应分析
        5.6.3 堆石边坡工程地震时程分析
    5.7 堆石边坡工程措施实施效果分析
        5.7.1 工程措施的离散元模型构建
        5.7.2 不同混凝土挡墙高度下运行工况分析
        5.7.3 不同混凝土挡墙高度下滚石工况分析
    5.8 本章小结
6 总结与展望
    6.1 总结
    6.2 展望
参考文献
致谢
攻读学位期间主要研究成果

(5)水电站群数据采集系统研究开发(论文提纲范文)

摘要
ABSTRACT
主要符号对照表
第一章 绪论
    1.1 研究背景
    1.2 国内外研究现状
        1.2.1 水电监控技术发展过程与研究现状
        1.2.2 SOA在电力系统中的应用
        1.2.3 当前研究工作存在的不足
    1.3 研究意义
    1.4 本文的主要工作
第二章 相关技术介绍
    2.1 云计算技术
        2.1.1 云计算的核心技术
        2.1.2 云计算技术主要特点
    2.2 Windows通信平台(WCF)技术
        2.2.1 WCF基本概念
        2.2.2 WCF技术框架
    2.3 AJAX技术
        2.3.1 AJAX技术原理
        2.3.2 基于AJAX技术的应用模式
        2.3.3 ASP.NET中的AJAX架构
    2.4 本章小结
第三章 水电站群数据采集系统设计
    3.1 系统总体架构设计
    3.2 系统软件架构设计
    3.3 系统历史数据库设计
        3.3.1 系统历史数据库特点
        3.3.2 历史数据库的选型
        3.3.3 历史数据表设计
        3.3.4 历史数据的存储流程
    3.4 本章小结
第四章 基于IEC104规约的数据通信功能实现
    4.1 IEC104规约主要内容
        4.1.1 规约体系结构
        4.1.2 应用规约数据单元
        4.1.3 三种类型的报文格式
        4.1.4 规约核心参数说明
        4.1.5 报文传输安全控制机制
        4.1.6 IEC104规约启动过程
    4.2 基于异步事件驱动机制的规约处理方法
    4.3 数据通信功能的实现
        4.3.1 数据采集软件的开发
        4.3.2 软件开发的难点与解决思路
        4.3.3 实例仿真与软件功能测试
        4.3.4 软件的工程调试
    4.4 本章小结
第五章 系统开发与实现
    5.1 系统功能结构
    5.2 开发环境
    5.3 基于WCF技术的数据服务开发
    5.4 基于B/S模式的人机交互子系统开发
        5.4.1 ASP.NET技术特点
        5.4.2 人机交互子系统开发
    5.5 系统部署与集成
        5.5.1 IIS安装与配置
        5.5.2 系统部署与发布
    5.6 系统运行及功能展示
        5.6.1 通道状态监测
        5.6.2 GIS地图全景监视
        5.6.3 遥测信息设置
        5.6.4 遥信信息设置
        5.6.5 计算量点设置
    5.7 系统性能测试
    5.8 本章小结
第六章 总结与展望
    6.1 总结
    6.2 展望
参考文献
致谢
攻读硕士学位期间取得的研究成果

(6)基于双层并行算法的水电站群优化调度方法及应用研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 选题背景及研究意义
        1.1.1 选题背景
        1.1.2 研究意义
    1.2 国内外研究现状
        1.2.1 国外研究现状
        1.2.2 国内研究现状
    1.3 梯级水电站群优化调度模型计算现状综述及分析
        1.3.1 梯级水电站群调度模型及算法演进历程
        1.3.2 梯级水电站群优化调度模型计算存在的主要问题
    1.4 本文主要研究内容及技术路线
        1.4.1 主要研究内容
        1.4.2 研究技术路线
    1.5 本文研究创新点
第2章 双层并行计算架构模式研究
    2.1 双层并行计算方法研究
        2.1.1 并行计算机内存结构
        2.1.2 并行计算架构
        2.1.3 并行计算实现方法及考虑因素
        2.1.4 并行计算性能评价指标
        2.1.5 双层并行计算架构
        2.1.6 并行算法
    2.2 优化算法并行化基础理论研究
        2.2.1 传统优化算法并行化
        2.2.2 智能优化算法及其并行化
    2.3 本章小结
第3章 水电站优化调度模型的双层并行算法
    3.1 水电站发电量最大优化调度基本模型
    3.2 基于混沌人工鱼群双层并行算法的水电站优化调度模型
        3.2.1 混沌人工鱼群双层并行算法(CAFSDPA)
        3.2.2 基于CAFSDPA水电站发电优化调度模型的求解步骤
    3.3 基于双层并行动态规划算法的水电站优化调度模型
        3.3.1 动态规划算法的并行因素分析
        3.3.2 模型双层并行计算流程
    3.4 本章小结
第4章 基于双层并行算法的水电站优化调度模型实证研究
    4.1 基于CAFSDPA的水电站优化调度模型实证研究
        4.1.1 相近算法计算结果比较
        4.1.2 部分参数不同情况下CAFSDPA计算结果比较
    4.2 基于双层并行动态规划算法的水电站实例论证
    4.3 本章小结
第5章 梯级水电站群的双层并行算法研究
    5.1 基于大系统分解协调的双层并行算法研究思路
    5.2 梯级水电站群发电优化调度大系统分解协调模型
        5.2.1 大系统分解协调
        5.2.2 梯级水电站群发电优化调度基本模型
        5.2.3 梯级水电站群发电优化调度分解协调模型
    5.3 基于分解后水电站CAFSDPA的大系统分解协调模型
        5.3.1 模型基本原理
        5.3.2 模型计算步骤
    5.4 基于分解后水电站多线程并行动态规划的双层并行算法研究
        5.4.1 分解后水电站动态规划算法
        5.4.2 模型计算可并行化分析
        5.4.3 多线程技术并行计算
        5.4.4 算法结合基本原理
        5.4.5 模型计算步骤
    5.5 基于分解后各水电站异时启动并行计算的双层并行算法研究
        5.5.1 异时启动并行计算
        5.5.2 并行策略的主要研究方向
        5.5.3 梯级水电站群优化计算新型并行策略基本研究思路
        5.5.4 梯级水电站群优化计算的新型并行策略
        5.5.5 新型并行策略分析
        5.5.6 基于分解后各水电站异时启动并行计算的双层并行算法
    5.6 混联水电站群新型并行策略展望
    5.7 本章小结
第6章 基于双层并行算法的水电站群大系统分解协调模型实证研究
    6.1 实例背景
    6.2 基于分解后水电站CAFSDPA的分解协调模型实例验证
        6.2.1 模型计算流程及问题论证方向
        6.2.2 计算结果分析
    6.3 基于分解后水电站多线程双层并行动态规划的分解协为模型实例验证
        6.3.1 程序流程图
        6.3.2 计算结果与分析
    6.4 基于分解后水电站异时启动并行计算的大系统分解协调双层并行算法实例验证
        6.4.1 基本模型建立
        6.4.2 异时启动并行计算方法设计
        6.4.3 实例计算结果与分析
    6.5 本章小结
第7章 研究成果和结论
参考文献
攻读博士学位期间发表的论文及其它成果
攻读博士学位期间参加的科研工作
致谢
作者简介

(7)水力发电机组系统可靠性与多能互补综合性能研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景与意义
    1.2 能源结构现状与发展趋势
        1.2.1 能源结构大转型下的水电角色
        1.2.2 能源结构调整水电调节重任
    1.3 水力发电系统运行稳定性研究综述
        1.3.1 水轮机调节系统之发电可靠性
        1.3.2 水轮发电机组轴系统之轴系振动
        1.3.3 风光水多能互补分析
    1.4 发电可靠性研究综述
        1.4.1 敏感性分析
        1.4.2 可靠性分析
        1.4.3 经济性分析
    1.5 课题来源
    1.6 研究思路与技术路线
        1.6.1 研究思路
        1.6.2 技术路线
第二章 水轮机调节系统基本模型及随机扰动分析
    2.1 引言
    2.2 水轮机调节系统动力学模型及其随机扰动概述
        2.2.1 引水系统动态模型随机扰动
        2.2.2 水轮机线性化(非线性)动态数学模型及随机扰动
        2.2.3 同步发电机动态模型随机扰动
        2.2.4 负荷动态模型随机扰动
        2.2.5 调速器动态模型
        2.2.6 励磁系统动态模型
        2.2.7 水轮机调节系统任务与调节模式
    2.3 本章小结
第三章 水轮发电机组轴系与水轮机调节系统耦合建模
    3.1 引言
    3.2 水轮发电机组轴系与水轮机调节系统耦合建模
        3.2.1 以发电机角速度为传递参数的耦合统一建模
        3.2.2 以水力不平衡力和水轮机动力矩为传递参数的耦合统一建模
        3.2.3 以水力激励力为传递参数的耦合统一建模
    3.3 本章小结
第四章 水轮发电机组系统参数不确定性分析
    4.1 引言
    4.2 数值仿真抽样方法
        4.2.1 蒙特卡洛(Monte-Carlo)抽样方法原理
        4.2.2 蒙特卡洛(Monte-Carlo)抽样方法步骤
    4.3 敏感性分析方法
        4.3.1 扩展傅里叶幅度检验法
        4.3.2 Sobol敏感性分析
    4.4 基于发电机角速度耦合统一模型参数不确定性分析与模型验证
        4.4.1 水轮机调节系统与水轮发电机组轴系耦合系统模型
        4.4.2 模型参数不确定性分析与模型验证
        4.4.3 不对中参数对系统模型状态变量动态演化过程影响
        4.4.4 发电机转子形心晃动幅度和不对中量关系
        4.4.5 小结
    4.5 基于水力不平衡力和动力矩模型参数不确定性分析与模型验证
        4.5.1 水轮机调节系统与水轮发电机组轴系耦合系统模型
        4.5.2 模型参数不确定性分析
        4.5.3 水轮机调节系统与水轮发电机组轴系耦合系统模型验证
        4.5.4 小结
    4.6 基于水力不平衡和动力矩的耦合系统振动模态分析
        4.6.1 水轮机调节系统与水轮发电机组轴系耦合系统模型
        4.6.2 非线性模态级数法
        4.6.3 非线性振动模态分析方法验证
        4.6.4 一阶振动模态分析
        4.6.5 讨论
        4.6.6 小结
    4.7 相继甩负荷工况下水力发电系统模型参数不确定性分析
        4.7.1 全局敏感性分析
        4.7.2 模型验证
        4.7.3 相继甩负荷对管道压力的影响
        4.7.4 相继甩负荷对调压室涌浪的影响
        4.7.5 相继甩负荷对转速波动的影响
        4.7.6 小结
    4.8 本章小结
第五章 风光水互补发电系统发电可靠性分析
    5.1 引言
    5.2 可靠性分析方法
        5.2.1 一阶可靠度法
        5.2.2 二阶可靠度法
    5.3 混合光伏/风电/水电微电网系统建模与参数不确定性分析
        5.3.1 基于水力激励力的耦合系统模型
        5.3.2 混合光伏/风电微电网
        5.3.3 参数不确定性对水力发电系统发电可靠性的影响
        5.3.4 水力发电系统参数间相互作用对并网可靠性影响
        5.3.5 水力发电系统轴系模型验证
        5.3.6 混合光伏/风电/水电微电网系统建模
        5.3.7 混合光伏/风电/水电微电网系统三相短路故障分析
        5.3.8 小结
        5.3.9 微电网系统参数
    5.4 风水互补发电系统发电可靠性分析
        5.4.1 风水互补发电系统模型说明
        5.4.2 风力发电系统风速模型场景
        5.4.3 风水互补系统互补特性分析
        5.4.4 风水互补系统发电可靠性评估指标
        5.4.5 风水互补系统水轮发电机组发电可靠性评估
        5.4.6 小结
    5.5 本章小结
第六章 水力发电系统的综合调节优势
    6.1 引言
    6.2 基于时空尺度风水互补发电资源利用度与平抑性等级评估
        6.2.1 基于连续小波变换的时间序列多尺度分解
        6.2.2 基于连续小波变换分析的时间序列多尺度分解
        6.2.3 基于最小二乘支持向量机的等级评估
        6.2.4 系统资源利用度与平抑性等级评估模型
        6.2.5 风水互补发电系统联合模型
        6.2.6 各类风速条件下风力发电资源评估
        6.2.7 小结
    6.3 水力发电系统在调节风力波动方面的经济性评估
        6.3.1 综合评价方法
        6.3.2 风水互补特性分析
        6.3.3 十四节点网络风水互补发电系统综合优势分析
        6.3.4 风水互补系统综合调节效益分析
    6.4 本章小结
第七章 总结与展望
    7.1 本文的主要贡献
    7.2 工作设想
参考文献
致谢
攻读博士学位期间取得的研究成果

(8)A公司水电企业集控运营管理研究(论文提纲范文)

摘要
ABSTRACT
1 绪论
    1.1 研究背景
    1.2 研究目的和意义
        1.2.1 研究目的
        1.2.2 研究意义
    1.3 研究内容和方法
        1.3.1研究内容
        1.3.2 研究方法
    1.4 研究方案及路线
        1.4.1 研究方案
        1.4.2 研究路线
2 文献综述及理论基础
    2.1 国内水电企业集控运营管理研究
    2.2 国外水电企业集控运营管理研究
    2.3 企业运营管理理论
    2.4 水电企业集控运营管理的特点及要素
        2.4.1 水电企业集控运营管理的特点
        2.4.2 水电企业集控运营管理的要素
    2.5 水电企业集控管理模式
        2.5.1 电力调度
        2.5.2 水库调度
        2.5.3 其他方面管理
3 A公司水电企业集控运营管理存在问题及原因分析
    3.1 A公司水电开发概况
    3.2 A公司水电企业集控运营管理简述
        3.2.1 “分公司、子公司”结合的经营管理
        3.2.2 “区域集控、水调集中”的发电运行管理
    3.3 A公司水电企业集控运营管理存在的问题
        3.3.1 电站间距离问题
        3.3.2 调度管理问题
        3.3.3 人员配置及素质的问题
        3.3.4 检修管理的问题
    3.4 A公司水电企业集控运营管理问题的原因分析
        3.4.1 历史原因
        3.4.2 管理方式转变滞后
4 A公司水电企业集控运营管理模式优化
    4.1 集控运营管理模式优化的原则与目标
        4.1.1 集控运营管理模式优化的原则
        4.1.2 集控运营管理模式优化的目标
    4.2 组织机构优化设计
        4.2.1 优化设计流程
        4.2.2 集控中心职能与框架设计
    4.3 优化具体措施
        4.3.1 进一步优化调度管理
        4.3.2 集控中心电力调度管理优化
        4.3.3 集控中心水库调度管理优化
        4.3.4 “运维一体化”管理
        4.3.5 加强人力资源管理
5 预期效果及保障措施
    5.1 预期效果
    5.2 保障措施
        5.2.1 发挥企业领导决策作用
        5.2.2 强化员工管理
        5.2.3 推进企业文化建设
        5.2.4 健全风险管控体系
6 结论及展望
参考文献
致谢

(9)水电站水轮机组远程监控系统研究与开发(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 课题研究背景及意义
        1.1.1 课题来源
        1.1.2 研究背景及意义
    1.2 课题及相关技术国内外发展和研究现
        1.2.1 水轮机设备的发展和现状
        1.2.2 远程监控技术国内外发展及现状
        1.2.3 故障诊断技术的发展以及研究现状
    1.3 论文研究内容与结构
        1.3.1 论文内容
        1.3.2 论文结构
第2章 系统总体需求分析与方案设计
    2.1 水电行业领域的整体分析
        2.1.1 水电站设备管理存在的问题
        2.1.2 水电行业运营与设备制造之间服务模式的探究
    2.2 远程系统需求分析
        2.2.1 远程监控系统的功能需求
        2.2.2 远程系统的性能需求
    2.3 系统结构的分析
        2.3.1 系统各级用户的需求
        2.3.2 系统软件结构分析
        2.3.3 系统硬件方案分析
    2.4 本章小结
第3章 系统故障信号智能诊断理论研究
    3.1 水轮发电机组故障信号机理分析
        3.1.1 水轮发电机振动信号特征
        3.1.2 水轮发电机振动信号的分类
    3.2 振动信号预处理分析方法
        3.2.1 小波变换法
        3.2.2 包络分析法
        3.2.3 经验模态分析法
        3.2.4 局部均值分析法
    3.3 信号预处理算法的改进和仿真研究
        3.3.1 LMD端点效应改进方案
    3.4 神经网络专家系统故障诊断研究
        3.4.1 专家系统的结构和框架
        3.4.2 专家系统的推理原理过程
        3.4.3 Elman人工神经网络
    3.5 本章小结
第4章 系统通讯与硬件实现
    4.1 数据通讯技术的研究
        4.1.1 Modbus TCP通讯协议
        4.1.2 WebSocket与网页实时交互技术
        4.1.3 Web Service传输技术
    4.2 系统硬件与通讯的实现
        4.2.1 系统硬件总体框架
    4.3 数据通讯技术的实现
        4.3.1 PLC与本地服务器数据通讯实现
        4.3.2 PLC与云服务器的通讯实现
        4.3.3 远程客户端与云服务器通讯实现
    4.4 本章小结
第5章 远程系统软件设计与开发
    5.1 云平台技术的应用
        5.1.1 云服务器选择
        5.1.2 云服务器的配置
        5.1.3 云服务器数据库的选择
        5.1.4 云服务器数据库的设计
    5.2 WEB SERVICE的开发
    5.3 软件开发框架
        5.3.1 系统管理模块
        5.3.2 用户管理模块
        5.3.3 数据管理
        5.3.4 远程控制模块
        5.3.5 技术参数远程修正界面
    5.4 系统云服务器上发布过程
    5.5 本章小结
第6章 水电站水轮机组远程监控系统测试
    6.1 水电站水轮机参数
    6.2 服务器性能测试
        6.2.1 用户的并发数据测试
        6.2.2 服务器流量需求测试
        6.2.3 实时性的测试
    6.3 本章小结
总结与展望
    总结
    展望
参考文献
致谢
附录 A 攻读学位期间所发表的学术论文目录

(10)青海电网绿色低碳发展规划优化模型及管理研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景及意义
        1.1.1 研究背景
        1.1.2 研究意义
    1.2 国内外研究现状
        1.2.1 电力负荷预测研究
        1.2.2 电力绿色发展研究
        1.2.3 电力多能互补研究
        1.2.4 电力综合评估研究
    1.3 主要研究内容和技术路线
        1.3.1 主要研究内容
        1.3.2 研究技术路线
        1.3.3 主要的创新点
    1.4 本章小结
第2章 相关基础理论
    2.1 可持续发展理论
        2.1.1 可持续发展内涵
        2.1.2 可持续发展属性
    2.2 绿色低碳发展理论
        2.2.1 低碳经济内涵
        2.2.2 低碳经济与可持续发展关系
        2.2.3 电力绿色发展的要素及特征
    2.3 电力负荷预测理论
        2.3.1 电力负荷预测基本概念
        2.3.2 经验与经典负荷预测方法
        2.3.3 时序趋势外推负荷预测方法
        2.3.4 回归模型负荷预测方法
    2.4 电力系统规划理论
        2.4.1 电力规划分类
        2.4.2 电力规划流程
    2.5 电力综合评估理论
        2.5.1 评估基本内涵
        2.5.2 评估主要分类
        2.5.3 评估构成要素
        2.5.4 基础评估方法
    2.6 本章小结
第3章 青海电网绿色发展现状分析
    3.1 能源资源概况
        3.1.1 煤炭资源
        3.1.2 水力资源
        3.1.3 风能资源
        3.1.4 太阳能资源
    3.2 电源建设概况
        3.2.1 水电装机
        3.2.2 火电装机
        3.2.3 新能源装机
    3.3 电网建设概况
    3.4 青海电网绿色发展现状分析
        3.4.1 新能源发电消纳分析
        3.4.2 电网安全生产分析
        3.4.3 绿色发展实现路径分析
    3.5 本章小结
第4章 青海电网绿色发展能源消费结构及用电量预测模型研究
    4.1 能源消费结构预测模型构建
        4.1.1 马尔可夫预测模型
        4.1.2 状态转移概率矩阵
        4.1.3 能源消费结构预测
    4.2 用电量综合最优组合预测模型构建
        4.2.1 预测误差指标
        4.2.2 基础数据准备
        4.2.3 单一模型预测分析
        4.2.4 优选组合预测模型
        4.2.5 综合最优组合模型构建及预测
    4.3 本章小结
第5章 青海电网绿色发展协同规划优化模型研究
    5.1 电网与电源协同规划分析
    5.2 电网与电源协同规划分层多目标模型
        5.2.1 上层模型
        5.2.2 下层模型
        5.2.3 相关约束函数
        5.2.4 模型构建及算法
        5.2.5 相关算例分析
    5.3 本章小结
第6章 青海电网绿色发展网源协同规划下的多能互补集成优化模型研究
    6.1 多能互补技术指标
        6.1.1 电力负荷指标
        6.1.2 电力电量指标
        6.1.3 发电特性指标
        6.1.4 可靠性评估指标
        6.1.5 购电量指标
    6.2 能源开发及电网规划
        6.2.1 光伏开发
        6.2.2 风电开发
        6.2.3 水电开发
        6.2.4 电网规划
    6.3 电力负荷及用电量需求分析
        6.3.1 电力负荷特性分析
        6.3.2 电力负荷及用电量需求
    6.4 光伏发电及互补分析
        6.4.1 海西州光伏发电分析
        6.4.2 海南州光伏发电分析
        6.4.3 青海电网光伏发电特性及互补分析
    6.5 风力发电及互补分析
        6.5.1 海西州风力发电分析
        6.5.2 海南州风力发电分析
        6.5.3 青海电网风力发电特性及互补分析
    6.6 多能互补集成优化模型
        6.6.1 风光自然互补特性分析
        6.6.2 风光水火多能互补集成优化分析
    6.7 本章小结
第7章 青海电网绿色发展电网规划项目综合效益评估模型研究
    7.1 电网规划项目综合效益评估指标体系构建
        7.1.1 指标体系构建原则
        7.1.2 综合效益评估指标体系构建
    7.2 基于层次分析和熵权法的评估指标组合赋权模型
        7.2.1 层次分析法
        7.2.2 熵权法
        7.2.3 组合权重确定
    7.3 基于理想解法的电网规划项目综合效益评估模型
        7.3.1 综合效益评估步骤
        7.3.2 综合效益评估总体结构
    7.4 相关算例分析
        7.4.1 数据准备整理
        7.4.2 指标权重计算
        7.4.3 综合效益评估
        7.4.4 评估结果分析
    7.5 本章小结
第8章 青海电网绿色发展管理对策及建议
    8.1 电网绿色发展优化管理对策
        8.1.1 加强电网与电源协同规划
        8.1.2 加快推进智能电网建设
        8.1.3 推进可再生能源电力配额制实施
        8.1.4 常态开展电网运行风险评估
    8.2 青海电网绿色发展管理建议
        8.2.1 开展保障新能源并网安全研究
        8.2.2 加强新能源电源发电预测研究
        8.2.3 深化新能源优先接入技术研究
        8.2.4 建立市场化新能源消纳保障机制
    8.3 本章小结
第9章 结论与展望
    9.1 结论
    9.2 展望
参考文献
攻读博士学位期间发表的论文及其它成果
攻读博士学位期间参加的科研工作
致谢
作者简介

四、水电站监控系统联合开发及若干技术问题探讨(论文参考文献)

  • [1]中国小水电大事记(1904—2019年)(之五)[J]. 赵建达,吴昊. 小水电, 2021(04)
  • [2]中国小水电大事记(1904—2019年)(之四)[J]. 赵建达,吴昊. 小水电, 2021(03)
  • [3]某水电站计算机监控系统的设计与实现[D]. 郭竞之. 电子科技大学, 2021(01)
  • [4]基于离散元的堆石料宏细观参数智能反分析及其工程应用研究[D]. 马春辉. 西安理工大学, 2020
  • [5]水电站群数据采集系统研究开发[D]. 何鹏辉. 广西大学, 2020(02)
  • [6]基于双层并行算法的水电站群优化调度方法及应用研究[D]. 吴昊. 华北电力大学(北京), 2020
  • [7]水力发电机组系统可靠性与多能互补综合性能研究[D]. 许贝贝. 西北农林科技大学, 2020
  • [8]A公司水电企业集控运营管理研究[D]. 候赛. 华中师范大学, 2020(02)
  • [9]水电站水轮机组远程监控系统研究与开发[D]. 杨浩. 兰州理工大学, 2020(12)
  • [10]青海电网绿色低碳发展规划优化模型及管理研究[D]. 杨兴. 华北电力大学(北京), 2020(06)

标签:;  ;  ;  ;  ;  

水电站监测系统联合开发及若干技术问题探讨
下载Doc文档

猜你喜欢